Newer
Older
/*WIKI*
TODO: Enter a full wiki-markup description of your algorithm here. You can then use the Build/wiki_maker.py script to generate your full wiki page.
*WIKI*/
#include "MantidDataHandling/LoadHelper.h"
namespace Mantid {
namespace DataHandling {
namespace
{
/// static logger
Kernel::Logger g_log("LoadHelper");
}
using namespace Kernel;
using namespace API;
}
LoadHelper::~LoadHelper() {
}
/**
* Finds the path for the instrument name in the nexus file
* Usually of the form: entry0/\<NXinstrument class\>/name
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
*/
std::string LoadHelper::findInstrumentNexusPath(
const NeXus::NXEntry &firstEntry) {
std::string insNamePath = "";
std::vector<NeXus::NXClassInfo> v = firstEntry.groups();
for (auto it = v.begin(); it < v.end(); it++) {
if (it->nxclass == "NXinstrument") {
insNamePath = it->nxname;
break;
}
}
return insNamePath;
}
std::string LoadHelper::getStringFromNexusPath(const NeXus::NXEntry &firstEntry,
const std::string &nexusPath) {
return firstEntry.getString(nexusPath);
}
double LoadHelper::getDoubleFromNexusPath(const NeXus::NXEntry &firstEntry,
const std::string &nexusPath) {
return firstEntry.getFloat(nexusPath);
}
/**
* Gets the time binning from a Nexus float array
* Adds an extra bin at the end
*/
std::vector<double> LoadHelper::getTimeBinningFromNexusPath(
const NeXus::NXEntry &firstEntry, const std::string &nexusPath) {
NeXus::NXFloat timeBinningNexus = firstEntry.openNXFloat(nexusPath);
timeBinningNexus.load();
size_t numberOfBins = static_cast<size_t>(timeBinningNexus.dim0()) + 1; // boundaries
float* timeBinning_p = &timeBinningNexus[0];
std::vector<double> timeBinning(numberOfBins);
timeBinning.assign(timeBinning_p, timeBinning_p + numberOfBins);
// calculate the extra bin at the end
timeBinning[numberOfBins - 1] = timeBinning[numberOfBins - 2]
+ timeBinning[1] - timeBinning[0];
return timeBinning;
}
/**
* Calculate Neutron Energy from wavelength: \f$ E = h^2 / 2m\lambda ^2 \f$
* @param wavelength :: wavelength in \f$ \AA \f$
* @return tof in seconds
*/
double LoadHelper::calculateEnergy(double wavelength) {
double e = (PhysicalConstants::h * PhysicalConstants::h)
/ (2 * PhysicalConstants::NeutronMass * wavelength * wavelength
* 1e-20) / PhysicalConstants::meV;
return e;
}
/**
* Calculate TOF from distance
* @param distance :: distance in meters
* @param wavelength :: wavelength to calculate TOF from
* @return tof in seconds
*/
double LoadHelper::calculateTOF(double distance,double wavelength) {
if (wavelength <= 0) {
throw std::runtime_error("Wavelenght is <= 0");
}
double velocity = PhysicalConstants::h
/ (PhysicalConstants::NeutronMass * wavelength * 1e-10); //m/s
return distance / velocity;
}
double LoadHelper::getL1(const API::MatrixWorkspace_sptr& workspace) {
Geometry::Instrument_const_sptr instrument =
workspace->getInstrument();
Geometry::IComponent_const_sptr sample = instrument->getSample();
double l1 = instrument->getSource()->getDistance(*sample);
return l1;
}
double LoadHelper::getL2(const API::MatrixWorkspace_sptr& workspace, int detId) {
// Get a pointer to the instrument contained in the workspace
Geometry::Instrument_const_sptr instrument =
workspace->getInstrument();
// Get the distance between the source and the sample (assume in metres)
Geometry::IComponent_const_sptr sample = instrument->getSample();
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Get the sample-detector distance for this detector (in metres)
double l2 = workspace->getDetector(detId)->getPos().distance(
sample->getPos());
return l2;
}
/*
* Get instrument property as double
* @s - input property name
*
*/
double LoadHelper::getInstrumentProperty(const API::MatrixWorkspace_sptr& workspace, std::string s) {
std::vector<std::string> prop =
workspace->getInstrument()->getStringParameter(s);
if (prop.empty()) {
g_log.debug("Property <" + s + "> doesn't exist!");
return EMPTY_DBL();
} else {
g_log.debug() << "Property <" + s + "> = " << prop[0] << std::endl;
return boost::lexical_cast<double>(prop[0]);
}
}
/**
* Parses the date as formatted at the ILL:
* 29-Jun-12 11:27:26
* and converts it to the ISO format used in Mantid:
* ISO8601 format string: "yyyy-mm-ddThh:mm:ss[Z+-]tz:tz"
*
* @param dateToParse :: date as string
* @return date as required in Mantid
*/
std::string LoadHelper::dateTimeInIsoFormat(std::string dateToParse) {
namespace bt = boost::posix_time;
// parsing format
const std::locale format = std::locale(std::locale::classic(),
new bt::time_input_facet("%d-%b-%y %H:%M:%S"));
bt::ptime pt;
std::istringstream is(dateToParse);
is.imbue(format);
is >> pt;
if (pt != bt::ptime()) {
// Converts to ISO
std::string s = bt::to_iso_extended_string(pt);
return s;
} else {
return "";
}
}
} // namespace DataHandling
} // namespace Mantid