Newer
Older
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
// NScD Oak Ridge National Laboratory, European Spallation Source
// & Institut Laue - Langevin
// SPDX - License - Identifier: GPL - 3.0 +
#include "MantidDataHandling/LoadILLPolarizationFactors.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/IncreasingAxisValidator.h"
#include "MantidAPI/TextAxis.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidDataObjects/WorkspaceCreation.h"
#include "MantidHistogramData/Histogram.h"
#include "MantidHistogramData/Interpolate.h"
#include <fstream>
namespace {
/// Constants for algorithm's property names.
namespace Prop {
const static std::string FILENAME{"Filename"};
const static std::string OUT_WS{"OutputWorkspace"};
const static std::string REF_WS{"WavelengthReference"};
/// A struct holding the due of number arrays in the IDL files.
struct FactorDefinition {
/// Wavelength points where the linear coeffs change.
std::vector<double> limits;
/// The linear coeffs to construct the efficiencies from.
std::vector<double> fitFactors;
};
/// Tags for the polarization factors.
enum class Factor { F1, F2, Phi, P1, P2 };
Factor factor(const std::string &l) {
const auto id = l.substr(0, 2);
if (id == "F1")
return Factor::F1;
if (id == "F2")
return Factor::F2;
if (id == "Ph")
return Factor::Phi;
if (id == "P1")
return Factor::P1;
if (id == "P2")
return Factor::P2;
throw std::runtime_error("Syntax error.");
}
/// Returns a list of all available Factor tags.
const std::array<Factor, 5> factor_list() {
return {{Factor::F1, Factor::F2, Factor::P1, Factor::P2, Factor::Phi}};
/// Returns the string presentation of tag f.
std::string to_string(const Factor f) {
switch (f) {
case Factor::F1:
return "F1";
case Factor::F2:
return "F2";
case Factor::P1:
return "P1";
case Factor::P2:
return "P2";
case Factor::Phi:
return "Phi";
}
throw std::runtime_error("Unknown polarization correction factor tag.");
}
/// Returns `l` with comments erased.
std::string cleanse_comments(const std::string &l) {
const auto commentBegin = l.find(';');
// commentBegin == npos is OK.
return l.substr(0, commentBegin);
}
/// Returns `l` with all whitespace erased.
std::string cleanse_whitespace(const std::string &l) {
std::string s;
s.reserve(l.size());
for (const auto c : l) {
if (!isblank(c)) {
s.push_back(c);
}
}
return s;
}
/// Returns true if `l` contains the limits array.
bool contains_limits(const std::string &l) {
return l.find("_limits") != std::string::npos;
}
/// Converts the IDL array in `l` to std::vector.
std::vector<double> extract_values(const std::string &l) {
const auto valBegin = l.find('[');
const auto valEnd = l.find(']');
if (valBegin == std::string::npos || valEnd == std::string::npos)
throw std::runtime_error("Syntax error.");
std::string valStr;
for (size_t i = valBegin + 1; i != valEnd; i++) {
const auto c = l[i];
if (c != ',') {
valStr.push_back(c);
if (i != valEnd - 1) {
continue;
}
}
double v;
try {
v = std::stod(valStr);
} catch (std::exception &) {
throw std::runtime_error("Syntax error");
}
values.emplace_back(v);
valStr.clear();
}
return values;
}
/// Returns a histogram with X set to [0, ...points..., maxWavelength)].
Mantid::HistogramData::Histogram
make_histogram(const std::vector<double> &points, const double maxWavelength) {
Mantid::HistogramData::Points p(points.size() + 2);
p.mutableRawData().front() = 0;
p.mutableRawData().back() =
maxWavelength > points.back() ? maxWavelength : 2 * points.back();
for (size_t i = 1; i != p.size() - 1; ++i) {
p.mutableData()[i] = points[i - 1];
}
const Mantid::HistogramData::Counts c(p.size());
return Mantid::HistogramData::Histogram(p, c);
}
/// Fills `h` with the efficiency factors.
void calculate_factors_in_place(Mantid::HistogramData::Histogram &h,
const std::vector<double> &piecewiseFactors) {
const auto &xs = h.x();
auto &ys = h.mutableY();
ys[0] = piecewiseFactors.front();
for (size_t i = 1; i != h.size(); ++i) {
ys[i] = ys[i - 1] + piecewiseFactors[i] * (xs[i] - xs[i - 1]);
}
}
/// Parses `in`, returns a map from factor tags to their numeric definitions.
std::map<Factor, FactorDefinition> parse(std::istream &in) {
std::map<Factor, FactorDefinition> factors;
std::string l;
while (!in.eof()) {
try {
std::getline(in, l);
} catch (std::exception &e) {
throw std::runtime_error(std::string("Unknown exception: ") + e.what());
}
l = cleanse_whitespace(l);
l = cleanse_comments(l);
if (l.empty())
continue;
auto &fDef = factors[factor(l)];
const auto values = extract_values(l);
if (contains_limits(l)) {
fDef.limits = values;
} else {
fDef.fitFactors = values;
}
}
return factors;
}
/// Checks that all needed data has been gathered.
void definition_map_sanity_check(const std::map<Factor, FactorDefinition> &m) {
const auto factors = factor_list();
for (const auto f : factors) {
const auto i = m.find(f);
if (i == m.end()) {
throw std::runtime_error("One of the factors is missing.");
}
const auto &fDef = (*i).second;
if (fDef.limits.empty()) {
throw std::runtime_error("No limits defined for a factor.");
}
if (fDef.fitFactors.empty()) {
throw std::runtime_error("No fitting information defined for a factor.");
}
if (fDef.limits.size() + 2 != fDef.fitFactors.size()) {
throw std::runtime_error(
"Size mismatch between limits and fitting information.");
}
}
}
/// Calculates error estimates in place.
void addErrors(Mantid::HistogramData::Histogram &h, const Factor tag) {
// The error estimates are taken from the LAMP/COSMOS software.
const auto f = [tag]() {
switch (tag) {
case Factor::F1:
case Factor::F2:
return 1. / 3000.;
case Factor::P1:
case Factor::P2:
case Factor::Phi:
return 1. / 500.;
default:
throw std::logic_error("Logic error: unknown efficiency factor tag.");
}
}();
h.mutableE() = (h.y() * f).rawData();
}
/// Sets the Y and X units for ws.
void setUnits(Mantid::API::MatrixWorkspace &ws) {
auto xAxis = ws.getAxis(0);
xAxis->setUnit("Wavelength");
ws.setYUnit("Polarization efficiency");
}
namespace Mantid {
namespace DataHandling {
using Mantid::API::WorkspaceProperty;
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(LoadILLPolarizationFactors)
//----------------------------------------------------------------------------------------------
/// Algorithms name for identification. @see Algorithm::name
const std::string LoadILLPolarizationFactors::name() const {
return "LoadILLPolarizationFactors";
}
/// Algorithm's version for identification. @see Algorithm::version
int LoadILLPolarizationFactors::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string LoadILLPolarizationFactors::category() const {
return "DataHandling\\Text;ILL\\Reflectometry";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string LoadILLPolarizationFactors::summary() const {
return "Loads ILL formatted reflectometry polarization efficiency factors.";
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void LoadILLPolarizationFactors::init() {
declareProperty(std::make_unique<API::FileProperty>(Prop::FILENAME, "",
API::FileProperty::Load),
"Path to the polarization efficiency file.");
const auto refWSValidator =
boost::make_shared<API::IncreasingAxisValidator>();
declareProperty(std::make_unique<WorkspaceProperty<API::MatrixWorkspace>>(
Prop::OUT_WS, "", Direction::Output, refWSValidator),
"An output workspace containing the efficiencies at the "
"reference workspace's wavelength points.");
declareProperty(std::make_unique<WorkspaceProperty<API::MatrixWorkspace>>(
Prop::REF_WS, "", Direction::Input),
"A reference workspace to get the wavelength axis from.");
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void LoadILLPolarizationFactors::exec() {
API::MatrixWorkspace_const_sptr refWS = getProperty(Prop::REF_WS);
HistogramData::Histogram tmplHist{refWS->histogram(0).points()};
API::MatrixWorkspace_sptr outWS =
DataObjects::create<DataObjects::Workspace2D>(5, tmplHist);
auto outVertAxis = std::make_unique<API::TextAxis>(5);
const auto maxWavelength = tmplHist.x().back();
const std::string filename = getProperty(Prop::FILENAME);
std::ifstream in(filename);
if (in.bad()) {
throw std::runtime_error("Couldn't open file " + filename);
}
const auto fittingData = [&in, &filename]() {
try {
const auto data = parse(in);
definition_map_sanity_check(data);
return data;
} catch (std::exception &e) {
throw std::runtime_error("Error while reading " + filename + ": " +
e.what());
}
}();
const auto factorTags = factor_list();
PARALLEL_FOR_IF(Kernel::threadSafe(*refWS))
for (int i = 0; i < static_cast<int>(factorTags.size()); ++i) {
PARALLEL_START_INTERUPT_REGION
const auto tag = factorTags[i];
const auto &fDef = fittingData.at(tag);
auto source = make_histogram(fDef.limits, maxWavelength);
calculate_factors_in_place(source, fDef.fitFactors);
auto target = outWS->histogram(i);
HistogramData::interpolateLinearInplace(source, target);
addErrors(target, tag);
HistogramData::Histogram outH{refWS->histogram(0)};
outH.setSharedY(target.sharedY());
outH.setSharedE(target.sharedE());
outWS->setHistogram(i, outH);
outVertAxis->setLabel(i, to_string(tag));
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
outWS->replaceAxis(1, std::move(outVertAxis));
setUnits(*outWS);
outWS->setTitle("Polarization efficiency factors");
setProperty(Prop::OUT_WS, outWS);
}
/** Validates the algorithm's inputs.
* @return a map from property names to discovered issues.
*/
std::map<std::string, std::string>
LoadILLPolarizationFactors::validateInputs() {
std::map<std::string, std::string> issues;
API::MatrixWorkspace_const_sptr refWS = getProperty(Prop::REF_WS);
if (refWS->getNumberHistograms() == 0) {
issues[Prop::REF_WS] =
"The reference workspace does not contain any histograms.";
return issues;
}
const auto &xs = refWS->x(0);
// A validator should have checked that xs is ordered.
if (xs.front() < 0) {
issues[Prop::REF_WS] =
"The reference workspace contains negative X values.";
}
return issues;
}
} // namespace DataHandling
} // namespace Mantid