Newer
Older
#include "MantidGeometry/Crystal/PointGroup.h"
#include "MantidKernel/System.h"
#include <set>
#include <boost/make_shared.hpp>
#include <iostream>
#include "MantidGeometry/Crystal/PointGroupFactory.h"
#include "MantidGeometry/Crystal/SymmetryOperationFactory.h"
namespace Mantid {
namespace Geometry {
using Kernel::V3D;
using Kernel::IntMatrix;
/**
* Returns all equivalent reflections for the supplied hkl.
*
* This method returns a vector containing all equivalent hkls for the supplied
* one. It depends on the internal state of the pointgroup object (e.g. which
* symmetry operations and therefore, which transformation matrices are
* present). This internal state is unique for each concrete point group and
* is set in the constructor.
*
* The returned vector always contains a set of unique hkls, so for special hkls
* like (100), it has fewer entries than for a general hkl. See also
* PointGroup::getEquivalentSet.
*
* @param hkl :: Arbitrary hkl
* @return :: std::vector containing all equivalent hkls.
*/
std::vector<V3D> PointGroup::getEquivalents(const V3D &hkl) const {
std::set<V3D> equivalents = getEquivalentSet(hkl);
return std::vector<V3D>(equivalents.rbegin(), equivalents.rend());
}
/**
* Returns the same V3D for all equivalent hkls.
*
* This method is closely related to PointGroup::getEquivalents. It returns the
* same V3D for all hkls of one "family". For example in a cubic point group
* it will return (100) for (001), (010), (0-10), etc.
*
* It can be used to generate a set of symmetry independent hkls, useful for
*
* @param hkl :: Arbitrary hkl
* @return :: hkl specific to a family of index-triplets
*/
V3D PointGroup::getReflectionFamily(const Kernel::V3D &hkl) const {
return *getEquivalentSet(hkl).rbegin();
}
/// Protected constructor - can not be used directly.
PointGroup::PointGroup(const std::string &symbolHM)
: m_symmetryOperations(), m_symbolHM(symbolHM) {}
/// Hermann-Mauguin symbol
std::string PointGroup::getSymbol() const { return m_symbolHM; }
/**
* Generates a set of hkls
*
* This method applies all transformation matrices to the supplied hkl and puts
* it into a set, which is returned in the end. Using a set ensures that each
* hkl occurs once and only once. This set is the set of equivalent hkls,
* specific to a concrete point group.
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
*
* The symmetry operations need to be set prior to calling this method by a call
* to PointGroup::setTransformationMatrices.
*
* @param hkl :: Arbitrary hkl
* @return :: set of hkls.
*/
std::set<V3D> PointGroup::getEquivalentSet(const Kernel::V3D &hkl) const {
std::set<V3D> equivalents;
equivalents.insert(hkl);
for (auto op = m_symmetryOperations.begin(); op != m_symmetryOperations.end();
++op) {
equivalents.insert((*op) * hkl);
}
return equivalents;
}
/// Sets the point group's symmetry operations.
void PointGroup::setSymmetryOperations(
const std::vector<SymmetryOperation> &generators) {
m_symmetryOperations.clear();
std::vector<SymmetryOperation> allSymmetryOperations =
generateSymmetryOperations(generators);
for (auto it = allSymmetryOperations.begin();
it != allSymmetryOperations.end(); ++it) {
addSymmetryOperation(*it);
}
}
/// Adds a symmetry operation to the point group.
void
PointGroup::addSymmetryOperation(const SymmetryOperation &symmetryOperation) {
m_symmetryOperations.push_back(symmetryOperation);
}
/// Returns all symmetry operations stored in the point group.
std::vector<SymmetryOperation> PointGroup::getSymmetryOperations() const {
return m_symmetryOperations;
}
/**
* Returns all symmetry operations generated by a list of symmetry operations
*
* This method takes a vector of symmetry operations and returns the resulting
* set of symmetry operations. It does so by applying the first symmetry
* operation (order - 1) times to an identity operation which results in a list
* of (order - 1) matrices. Then it multiplies the second operation to all these
* operations, and so on.
*
* Using this method, all point groups can be described using a maximum of four
* symmetry operations. m-3m for example, which is defined in PointGroupLaue13,
* needs only four symmetry operations to generate all 48 transformation
* matrices.
* It does not matter which symmetry operations are chosen, as long
* as the chosen set generates all (but not more than) present in the point
* group. For 2/m, one could for example either choose (m and 2)
* or (m and -1) or (2 and -1).
*
* All 32 point groups can be found in:
* International Tables for Crystallography A, 2006, pp. 770 - 790 (Table
* 10.1.2.2)
*
* @param symmetryOperations
* @return
*/
std::vector<SymmetryOperation> PointGroup::generateSymmetryOperations(
const std::vector<SymmetryOperation> &symmetryOperations) {
SymmetryOperation identity;
std::vector<SymmetryOperation> allSymmetryOperations;
allSymmetryOperations.push_back(identity);
for (std::vector<SymmetryOperation>::const_iterator symOp =
symmetryOperations.begin();
symOp != symmetryOperations.end(); ++symOp) {
std::vector<SymmetryOperation> currentMatrices(allSymmetryOperations);
for (std::vector<SymmetryOperation>::const_iterator currentMatrix =
currentMatrices.begin();
currentMatrix != currentMatrices.end(); ++currentMatrix) {
SymmetryOperation transformed = *currentMatrix;
for (size_t i = 0; i < (*symOp).order() - 1; ++i) {
transformed = (*symOp) * transformed;
allSymmetryOperations.push_back(transformed);
return allSymmetryOperations;
}
PointGroupLaue1::PointGroupLaue1() : PointGroup("-1") {}
std::string PointGroupLaue1::getName() const { return "-1 (Triclinic)"; }
bool PointGroupLaue1::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, -l));
}
PointGroup::CrystalSystem PointGroupLaue1::crystalSystem() const {
return Triclinic;
}
void PointGroupLaue1::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue2::PointGroupLaue2() : PointGroup("2/m") {}
std::string PointGroupLaue2::getName() const {
return "1 2/m 1 (Monoclinic, unique axis b)";
}
bool PointGroupLaue2::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, -l)) ||
(hkl2 == V3D(-h, k, -l)) || (hkl2 == V3D(h, -k, l));
}
PointGroup::CrystalSystem PointGroupLaue2::crystalSystem() const {
return Monoclinic;
}
void PointGroupLaue2::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,-y,z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue3::PointGroupLaue3() : PointGroup("112/m") {}
std::string PointGroupLaue3::getName() const {
return "1 1 2/m (Monoclinic, unique axis c)";
}
bool PointGroupLaue3::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(h, k, -l));
}
PointGroup::CrystalSystem PointGroupLaue3::crystalSystem() const {
return Monoclinic;
}
void PointGroupLaue3::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue4::PointGroupLaue4() : PointGroup("mmm") {}
std::string PointGroupLaue4::getName() const { return "mmm (Orthorombic)"; }
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
bool PointGroupLaue4::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(-h, k, -l)) || (hkl2 == V3D(h, -k, -l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(h, -k, l)) || (hkl2 == V3D(-h, k, l));
}
PointGroup::CrystalSystem PointGroupLaue4::crystalSystem() const {
return Orthorhombic;
}
void PointGroupLaue4::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,-y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue5::PointGroupLaue5() : PointGroup("4/m") {}
std::string PointGroupLaue5::getName() const { return "4/m (Tetragonal)"; }
bool PointGroupLaue5::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(-k, h, l)) || (hkl2 == V3D(k, -h, l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(k, -h, -l)) || (hkl2 == V3D(-k, h, -l));
}
PointGroup::CrystalSystem PointGroupLaue5::crystalSystem() const {
return Tetragonal;
}
void PointGroupLaue5::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-y,x,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue6::PointGroupLaue6() : PointGroup("4/mmm") {}
std::string PointGroupLaue6::getName() const { return "4/mmm (Tetragonal)"; }
bool PointGroupLaue6::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(-k, h, l)) || (hkl2 == V3D(k, -h, l)) ||
(hkl2 == V3D(-h, k, -l)) || (hkl2 == V3D(h, -k, -l)) ||
(hkl2 == V3D(k, h, -l)) || (hkl2 == V3D(-k, -h, -l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(k, -h, -l)) || (hkl2 == V3D(-k, h, -l)) ||
(hkl2 == V3D(h, -k, l)) || (hkl2 == V3D(-h, k, l)) ||
(hkl2 == V3D(-k, -h, l)) || (hkl2 == V3D(k, h, l));
}
PointGroup::CrystalSystem PointGroupLaue6::crystalSystem() const {
return Tetragonal;
}
void PointGroupLaue6::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-y,x,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,-y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue7::PointGroupLaue7() : PointGroup("-3") {}
std::string PointGroupLaue7::getName() const {
return "-3 (Trigonal - Hexagonal)";
}
bool PointGroupLaue7::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-k, h - k, l)) ||
(hkl2 == V3D(-h + k, -h, l)) || (hkl2 == V3D(-h, -k, -l)) ||
(hkl2 == V3D(k, -h + k, -l)) || (hkl2 == V3D(h - k, h, -l));
}
PointGroup::CrystalSystem PointGroupLaue7::crystalSystem() const {
return Trigonal;
}
void PointGroupLaue7::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-y,x-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue8::PointGroupLaue8() : PointGroup("-3m1") {}
std::string PointGroupLaue8::getName() const {
return "-3m1 (Trigonal - Rhombohedral)";
}
bool PointGroupLaue8::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-k, h - k, l)) ||
(hkl2 == V3D(-h + k, -h, l)) || (hkl2 == V3D(-k, -h, -l)) ||
(hkl2 == V3D(-h + k, k, -l)) || (hkl2 == V3D(h, h - k, -l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(k, -h + k, -l)) ||
(hkl2 == V3D(h - k, h, -l)) || (hkl2 == V3D(k, h, l)) ||
(hkl2 == V3D(h - k, -k, l)) || (hkl2 == V3D(-h, -h + k, l));
}
PointGroup::CrystalSystem PointGroupLaue8::crystalSystem() const {
return Trigonal;
}
void PointGroupLaue8::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-y,x-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,y-x,z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue9::PointGroupLaue9() : PointGroup("-31m") {}
std::string PointGroupLaue9::getName() const {
return "-31m (Trigonal - Rhombohedral)";
}
bool PointGroupLaue9::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-k, h - k, l)) ||
(hkl2 == V3D(-h + k, -h, l)) || (hkl2 == V3D(-k, -h, -l)) ||
(hkl2 == V3D(-h + k, k, -l)) || (hkl2 == V3D(h, h - k, -l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(k, -h + k, -l)) ||
(hkl2 == V3D(h - k, h, -l)) || (hkl2 == V3D(k, h, l)) ||
(hkl2 == V3D(h - k, -k, l)) || (hkl2 == V3D(-h, -h + k, l));
}
PointGroup::CrystalSystem PointGroupLaue9::crystalSystem() const {
return Trigonal;
}
void PointGroupLaue9::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-y,x-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,y-x,z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue10::PointGroupLaue10() : PointGroup("6/m") {}
std::string PointGroupLaue10::getName() const { return "6/m (Hexagonal)"; }
bool PointGroupLaue10::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-k, h - k, l)) ||
(hkl2 == V3D(-h + k, -h, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(k, -h + k, l)) || (hkl2 == V3D(h - k, h, l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(k, -h + k, -l)) ||
(hkl2 == V3D(h - k, h, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(-k, h - k, -l)) || (hkl2 == V3D(-h + k, -h, -l));
}
PointGroup::CrystalSystem PointGroupLaue10::crystalSystem() const {
return Hexagonal;
}
void PointGroupLaue10::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x-y,x,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue11::PointGroupLaue11() : PointGroup("6/mmm") {}
std::string PointGroupLaue11::getName() const { return "6/mmm (Hexagonal)"; }
bool PointGroupLaue11::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-k, h - k, l)) ||
(hkl2 == V3D(-h + k, -h, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(k, -h + k, l)) || (hkl2 == V3D(h - k, h, l)) ||
(hkl2 == V3D(k, h, -l)) || (hkl2 == V3D(h - k, -k, -l)) ||
(hkl2 == V3D(-h, -h + k, -l)) || (hkl2 == V3D(-k, -h, -l)) ||
(hkl2 == V3D(-h + k, k, -l)) || (hkl2 == V3D(h, h - k, -l)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(k, -h + k, -l)) ||
(hkl2 == V3D(h - k, h, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(-k, h - k, -l)) || (hkl2 == V3D(-h + k, -h, -l)) ||
(hkl2 == V3D(-k, -h, l)) || (hkl2 == V3D(-h + k, k, l)) ||
(hkl2 == V3D(h, h - k, l)) || (hkl2 == V3D(k, h, l)) ||
(hkl2 == V3D(h - k, -k, l)) || (hkl2 == V3D(-h, -h + k, l));
}
PointGroup::CrystalSystem PointGroupLaue11::crystalSystem() const {
return Hexagonal;
}
void PointGroupLaue11::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x-y,x,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x-y,-y,-z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue12::PointGroupLaue12() : PointGroup("m-3") {}
std::string PointGroupLaue12::getName() const { return "m-3 (Cubic)"; }
bool PointGroupLaue12::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(-h, k, -l)) || (hkl2 == V3D(h, -k, -l)) ||
(hkl2 == V3D(l, h, k)) || (hkl2 == V3D(l, -h, -k)) ||
(hkl2 == V3D(-l, -h, k)) || (hkl2 == V3D(-l, h, -k)) ||
(hkl2 == V3D(k, l, h)) || (hkl2 == V3D(-k, l, -h)) ||
(hkl2 == V3D(k, -l, -h)) || (hkl2 == V3D(-k, -l, h)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(h, -k, l)) || (hkl2 == V3D(-h, k, l)) ||
(hkl2 == V3D(-l, -h, -k)) || (hkl2 == V3D(-l, h, k)) ||
(hkl2 == V3D(l, h, -k)) || (hkl2 == V3D(l, -h, k)) ||
(hkl2 == V3D(-k, -l, -h)) || (hkl2 == V3D(k, -l, h)) ||
(hkl2 == V3D(-k, l, h)) || (hkl2 == V3D(k, l, -h));
}
PointGroup::CrystalSystem PointGroupLaue12::crystalSystem() const {
return Cubic;
}
void PointGroupLaue12::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("z,x,y"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
PointGroupLaue13::PointGroupLaue13() : PointGroup("m-3m") {}
std::string PointGroupLaue13::getName() const { return "m-3m (Cubic)"; }
bool PointGroupLaue13::isEquivalent(const V3D &hkl, const V3D &hkl2) const {
double h = hkl[0];
double k = hkl[1];
double l = hkl[2];
return (hkl2 == V3D(h, k, l)) || (hkl2 == V3D(-h, -k, l)) ||
(hkl2 == V3D(-h, k, -l)) || (hkl2 == V3D(h, -k, -l)) ||
(hkl2 == V3D(l, h, k)) || (hkl2 == V3D(l, -h, -k)) ||
(hkl2 == V3D(-l, -h, k)) || (hkl2 == V3D(-l, h, -k)) ||
(hkl2 == V3D(k, l, h)) || (hkl2 == V3D(-k, l, -h)) ||
(hkl2 == V3D(k, -l, -h)) || (hkl2 == V3D(-k, -l, h)) ||
(hkl2 == V3D(k, h, -l)) || (hkl2 == V3D(-k, -h, -l)) ||
(hkl2 == V3D(k, -h, l)) || (hkl2 == V3D(-k, h, l)) ||
(hkl2 == V3D(h, l, -k)) || (hkl2 == V3D(-h, l, k)) ||
(hkl2 == V3D(-h, -l, -k)) || (hkl2 == V3D(h, -l, k)) ||
(hkl2 == V3D(l, k, -h)) || (hkl2 == V3D(l, -k, h)) ||
(hkl2 == V3D(-l, k, h)) || (hkl2 == V3D(-l, -k, -h)) ||
(hkl2 == V3D(-h, -k, -l)) || (hkl2 == V3D(h, k, -l)) ||
(hkl2 == V3D(h, -k, l)) || (hkl2 == V3D(-h, k, l)) ||
(hkl2 == V3D(-l, -h, -k)) || (hkl2 == V3D(-l, h, k)) ||
(hkl2 == V3D(l, h, -k)) || (hkl2 == V3D(l, -h, k)) ||
(hkl2 == V3D(-k, -l, -h)) || (hkl2 == V3D(k, -l, h)) ||
(hkl2 == V3D(-k, l, h)) || (hkl2 == V3D(k, l, -h)) ||
(hkl2 == V3D(-k, -h, l)) || (hkl2 == V3D(k, h, l)) ||
(hkl2 == V3D(-k, h, -l)) || (hkl2 == V3D(k, -h, -l)) ||
(hkl2 == V3D(-h, -l, k)) || (hkl2 == V3D(h, -l, -k)) ||
(hkl2 == V3D(h, l, k)) || (hkl2 == V3D(-h, l, -k)) ||
(hkl2 == V3D(-l, -k, h)) || (hkl2 == V3D(-l, k, -h)) ||
(hkl2 == V3D(l, -k, -h)) || (hkl2 == V3D(l, k, h));
}
PointGroup::CrystalSystem PointGroupLaue13::crystalSystem() const {
return Cubic;
}
void PointGroupLaue13::init() {
std::vector<SymmetryOperation> generatingSymmetryOperations;
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("z,x,y"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-y,x,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("x,-y,z"));
generatingSymmetryOperations.push_back(
SymmetryOperationFactory::Instance().createSymOp("-x,-y,-z"));
setSymmetryOperations(generatingSymmetryOperations);
}
/** @return a vector with all possible PointGroup objects */
std::vector<PointGroup_sptr> getAllPointGroups() {
std::vector<std::string> allSymbols =
PointGroupFactory::Instance().getAllPointGroupSymbols();
std::vector<PointGroup_sptr> out;
for (auto it = allSymbols.begin(); it != allSymbols.end(); ++it) {
out.push_back(PointGroupFactory::Instance().createPointGroup(*it));
}
return out;
}
PointGroupCrystalSystemMap getPointGroupsByCrystalSystem() {
PointGroupCrystalSystemMap map;
std::vector<PointGroup_sptr> pointGroups = getAllPointGroups();
for (size_t i = 0; i < pointGroups.size(); ++i) {
map.insert(std::make_pair(pointGroups[i]->crystalSystem(), pointGroups[i]));
}
return map;
}
DECLARE_POINTGROUP(PointGroupLaue1)
DECLARE_POINTGROUP(PointGroupLaue2)
DECLARE_POINTGROUP(PointGroupLaue3)
DECLARE_POINTGROUP(PointGroupLaue4)
DECLARE_POINTGROUP(PointGroupLaue5)
DECLARE_POINTGROUP(PointGroupLaue6)
DECLARE_POINTGROUP(PointGroupLaue7)
DECLARE_POINTGROUP(PointGroupLaue8)
DECLARE_POINTGROUP(PointGroupLaue9)
DECLARE_POINTGROUP(PointGroupLaue10)
DECLARE_POINTGROUP(PointGroupLaue11)
DECLARE_POINTGROUP(PointGroupLaue12)
DECLARE_POINTGROUP(PointGroupLaue13)
} // namespace Mantid
} // namespace Geometry