Newer
Older
#include "MantidVatesAPI/vtkDataSetToNonOrthogonalDataSet.h"
#include "MantidAPI/CoordTransform.h"
#include "MantidAPI/IMDEventWorkspace.h"
#include "MantidAPI/IMDHistoWorkspace.h"
#include "MantidAPI/Run.h"
#include "MantidAPI/Sample.h"
#include "MantidGeometry/Crystal/UnitCell.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/Matrix.h"
#include "MantidVatesAPI/ADSWorkspaceProvider.h"
#include "MantidVatesAPI/vtkDataSetToWsName.h"
#include "vtkSMPTools.h"
#include "vtkVector.h"
#include <vtkDataObject.h>
#include <vtkDoubleArray.h>
#include <vtkFieldData.h>
#include <vtkFloatArray.h>
#include <vtkMatrix3x3.h>
#include <vtkMatrix4x4.h>
#include <vtkNew.h>
#include <vtkPVChangeOfBasisHelper.h>
#include <vtkPointSet.h>
#include <vtkPoints.h>
#include <vtkSmartPointer.h>
#include <vtkPointData.h>
#include "vtkNew.h"
#include <boost/algorithm/string/find.hpp>
using namespace Mantid;
namespace {
Mantid::Kernel::Logger g_log("vtkDataSetToNonOrthogonalDataSet");
void addChangeOfBasisMatrixToFieldData(
vtkDataObject *dataObject, const MantidVec &u, const MantidVec &v,
const MantidVec &w, const std::array<double, 6> &boundingBox) {
if (!dataObject) {
throw std::invalid_argument("Change of basis needs a vtkDataObject");
}
throw std::invalid_argument("Change of basis requires 3-element u");
}
throw std::invalid_argument("Change of basis requires 3-element v");
}
throw std::invalid_argument("Change of basis requires 3-element w");
}
vtkSmartPointer<vtkMatrix4x4> cobMatrix =
vtkPVChangeOfBasisHelper::GetChangeOfBasisMatrix(
vtkVector3d(&u[0]), vtkVector3d(&v[0]), vtkVector3d(&w[0]));
if (!vtkPVChangeOfBasisHelper::AddChangeOfBasisMatrixToFieldData(dataObject,
cobMatrix)) {
g_log.warning("The Change-of-Basis-Matrix could not be added to the field "
"data of the data set.\n");
}
if (!vtkPVChangeOfBasisHelper::AddBoundingBoxInBasis(dataObject,
&boundingBox[0])) {
g_log.warning("The bounding box could not be added to the field data of "
"the data set.\n");
}
}
}
namespace Mantid {
namespace VATES {
/**
* This is the private class constructor.
* @param dataset : The VTK data to modify
* @param name : The MDWorkspace containing the information to construct.
* @param workspaceProvider: The provider of one or multiple workspaces.
vtkDataSetToNonOrthogonalDataSet::vtkDataSetToNonOrthogonalDataSet(
vtkDataSet *dataset, std::string name,
std::unique_ptr<Mantid::VATES::WorkspaceProvider> workspaceProvider)
: m_dataSet(dataset), m_wsName(name), m_numDims(3), m_skewMat(),
m_basisNorm(), m_basisX(1, 0, 0), m_basisY(0, 1, 0), m_basisZ(0, 0, 1),
m_workspaceProvider(std::move(workspaceProvider)) {
throw std::runtime_error("Cannot construct "
"vtkDataSetToNonOrthogonalDataSet with null VTK "
"dataset");
}
if (name.empty()) {
throw std::runtime_error("Cannot construct "
"vtkDataSetToNonOrthogonalDataSet without "
"associated workspace name");
}
}
/**
* Class destructor
*/
vtkDataSetToNonOrthogonalDataSet::~vtkDataSetToNonOrthogonalDataSet() {}
namespace {
struct Worker {
Mantid::coord_t *m_skew;
vtkFloatArray *m_pts;
Worker(Mantid::coord_t *skew, vtkFloatArray *pts)
: m_skew(skew), m_pts(pts) {}
void operator()(vtkIdType begin, vtkIdType end) {
float in[3], out[3];
for (vtkIdType index = begin; index < end; ++index) {
m_pts->GetTypedTuple(index, in);
out[0] = in[0] * m_skew[0] + in[1] * m_skew[1] + in[2] * m_skew[2];
out[1] = in[0] * m_skew[3] + in[1] * m_skew[4] + in[2] * m_skew[5];
out[2] = in[0] * m_skew[6] + in[1] * m_skew[7] + in[2] * m_skew[8];
m_pts->SetTypedTuple(index, out);
}
}
};
} // end anon namespace
void vtkDataSetToNonOrthogonalDataSet::execute(ProgressAction *progress) {
// Downcast to a vtkPointSet
vtkPointSet *data = vtkPointSet::SafeDownCast(m_dataSet);
throw std::runtime_error("VTK dataset does not inherit from vtkPointSet");
}
// Get the workspace from the workspace provider
API::Workspace_sptr ws = m_workspaceProvider->fetchWorkspace(m_wsName);
std::string wsType = ws->id();
Geometry::OrientedLattice oLatt;
std::vector<double> wMatArr;
Kernel::Matrix<coord_t> affMat;
// Have to cast since inherited class doesn't provide access to all info
if (boost::algorithm::find_first(wsType, "MDHistoWorkspace")) {
API::IMDHistoWorkspace_const_sptr infoWs =
boost::dynamic_pointer_cast<const API::IMDHistoWorkspace>(ws);
m_boundingBox[0] = infoWs->getXDimension()->getMinimum();
m_boundingBox[1] = infoWs->getXDimension()->getMaximum();
m_boundingBox[2] = infoWs->getYDimension()->getMinimum();
m_boundingBox[3] = infoWs->getYDimension()->getMaximum();
m_boundingBox[4] = infoWs->getZDimension()->getMinimum();
m_boundingBox[5] = infoWs->getZDimension()->getMaximum();
m_numDims = infoWs->getNumDims();
m_coordType = infoWs->getSpecialCoordinateSystem();
if (Kernel::HKL != m_coordType) {
throw std::invalid_argument(
"Cannot create non-orthogonal view for non-HKL coordinates");
}
const API::Sample sample = infoWs->getExperimentInfo(0)->sample();
if (!sample.hasOrientedLattice()) {
throw std::invalid_argument(
"OrientedLattice is not present on workspace");
}
oLatt = sample.getOrientedLattice();
const API::Run run = infoWs->getExperimentInfo(0)->run();
if (!run.hasProperty("W_MATRIX")) {
throw std::invalid_argument("W_MATRIX is not present on workspace");
}
wMatArr = run.getPropertyValueAsType<std::vector<double>>("W_MATRIX");
try {
API::CoordTransform const *transform = infoWs->getTransformToOriginal();
affMat = transform->makeAffineMatrix();
} catch (std::runtime_error &) {
// Create identity matrix of dimension+1
std::size_t nDims = infoWs->getNumDims() + 1;
Kernel::Matrix<coord_t> temp(nDims, nDims, true);
affMat = temp;
// This is only here to make the unit test run.
if (boost::algorithm::find_first(wsType, "MDEventWorkspace")) {
API::IMDEventWorkspace_const_sptr infoWs =
boost::dynamic_pointer_cast<const API::IMDEventWorkspace>(ws);
m_boundingBox[0] = infoWs->getXDimension()->getMinimum();
m_boundingBox[1] = infoWs->getXDimension()->getMaximum();
m_boundingBox[2] = infoWs->getYDimension()->getMinimum();
m_boundingBox[3] = infoWs->getYDimension()->getMaximum();
m_boundingBox[4] = infoWs->getZDimension()->getMinimum();
m_boundingBox[5] = infoWs->getZDimension()->getMaximum();
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
m_numDims = infoWs->getNumDims();
m_coordType = infoWs->getSpecialCoordinateSystem();
if (Kernel::HKL != m_coordType) {
throw std::invalid_argument(
"Cannot create non-orthogonal view for non-HKL coordinates");
}
const API::Sample sample = infoWs->getExperimentInfo(0)->sample();
if (!sample.hasOrientedLattice()) {
throw std::invalid_argument(
"OrientedLattice is not present on workspace");
}
oLatt = sample.getOrientedLattice();
const API::Run run = infoWs->getExperimentInfo(0)->run();
if (!run.hasProperty("W_MATRIX")) {
throw std::invalid_argument("W_MATRIX is not present on workspace");
}
wMatArr = run.getPropertyValueAsType<std::vector<double>>("W_MATRIX");
try {
API::CoordTransform const *transform = infoWs->getTransformToOriginal();
affMat = transform->makeAffineMatrix();
} catch (std::runtime_error &) {
// Create identity matrix of dimension+1
std::size_t nDims = infoWs->getNumDims() + 1;
Kernel::Matrix<coord_t> temp(nDims, nDims, true);
affMat = temp;
}
}
Kernel::DblMatrix wTrans(wMatArr);
this->createSkewInformation(oLatt, wTrans, affMat);
/// Put together the skew matrix for use
Mantid::coord_t skew[9];
// Create from the internal skew matrix
std::size_t index = 0;
for (std::size_t i = 0; i < m_skewMat.numRows(); i++) {
for (std::size_t j = 0; j < m_skewMat.numCols(); j++) {
skew[index] = static_cast<Mantid::coord_t>(m_skewMat[i][j]);
// Get the original points
vtkFloatArray *points =
vtkFloatArray::FastDownCast(data->GetPoints()->GetData());
throw std::runtime_error("Failed to cast vtkDataArray to vtkFloatArray.");
} else if (points->GetNumberOfComponents() != 3) {
throw std::runtime_error("points array must have 3 components.");
}
Worker func(skew, points);
vtkSMPTools::For(0, points->GetNumberOfTuples(), func);
this->updateMetaData(data);
}
/**
* This function will create the skew matrix and basis for a non-orthogonal
* representation.
*
* @param ol : The oriented lattice containing B matrix and crystal basis
*vectors
* @param w : The tranform requested when MDworkspace was created
* @param aff : The affine matrix taking care of coordinate transformations
*/
void vtkDataSetToNonOrthogonalDataSet::createSkewInformation(
Geometry::OrientedLattice &ol, Kernel::DblMatrix &w,
Kernel::Matrix<coord_t> &aff) {
// Get the B matrix
Kernel::DblMatrix bMat = ol.getB();
// Apply the W tranform matrix
bMat *= w;
// Create G*
Kernel::DblMatrix gStar = bMat.Tprime() * bMat;
Geometry::UnitCell uc(ol);
uc.recalculateFromGstar(gStar);
m_skewMat = uc.getB();
// Calculate the column normalisation
std::vector<double> bNorm;
for (std::size_t i = 0; i < m_skewMat.numCols(); i++) {
double sum = 0.0;
for (std::size_t j = 0; j < m_skewMat.numRows(); j++) {
sum += m_skewMat[j][i] * m_skewMat[j][i];
}
bNorm.push_back(std::sqrt(sum));
}
// Apply column normalisation to skew matrix
Kernel::DblMatrix scaleMat(3, 3, true);
scaleMat[0][0] /= bNorm[0];
scaleMat[1][1] /= bNorm[1];
scaleMat[2][2] /= bNorm[2];
m_skewMat *= scaleMat;
// Setup basis normalisation array
m_basisNorm = {ol.astar(), ol.bstar(), ol.cstar()};
// Expand matrix to 4 dimensions if necessary
m_basisNorm.push_back(1.0);
Kernel::DblMatrix temp(4, 4, true);
for (std::size_t i = 0; i < 3; i++) {
for (std::size_t j = 0; j < 3; j++) {
temp[i][j] = m_skewMat[i][j];
m_skewMat = temp;
}
// Convert affine matrix to similar type as others
Kernel::DblMatrix affMat(aff.numRows(), aff.numCols());
for (std::size_t i = 0; i < aff.numRows(); i++) {
for (std::size_t j = 0; j < aff.numCols(); j++) {
affMat[i][j] = aff[i][j];
}
}
// Strip affine matrix down to correct dimensions
this->stripMatrix(affMat);
// Perform similarity transform to get coordinate orientation correct
m_skewMat = affMat.Tprime() * (m_skewMat * affMat);
m_basisNorm = affMat * m_basisNorm;
this->stripMatrix(m_skewMat);
}
this->findSkewBasis(m_basisX, m_basisNorm[0]);
this->findSkewBasis(m_basisY, m_basisNorm[1]);
this->findSkewBasis(m_basisZ, m_basisNorm[2]);
}
/**
* This function calculates the given skew basis vector.
*
* @param basis : The "base" basis vector.
* @param scale : Scale factor for the basis vector.
*/
void vtkDataSetToNonOrthogonalDataSet::findSkewBasis(Kernel::V3D &basis,
basis = m_skewMat * basis;
basis /= scale;
basis.normalize();
}
/**
* This function takes a square matrix and reduces its dimensionality by
* one.
*
* @param mat : The matrix to strip dimensionality
*/
void vtkDataSetToNonOrthogonalDataSet::stripMatrix(Kernel::DblMatrix &mat) {
std::size_t dim = mat.Ssize() - 1;
Kernel::DblMatrix temp(dim, dim);
for (std::size_t i = 0; i < dim; i++) {
for (std::size_t j = 0; j < dim; j++) {
temp[i][j] = mat[i][j];
}
}
mat = temp;
}
/**
* This function is responsible for adding the skew basis information to the
* VTK dataset.
* @param ugrid : The VTK dataset to add the metadata to
*/
void vtkDataSetToNonOrthogonalDataSet::updateMetaData(vtkDataSet *ugrid) {
// Create and add the change of basis matrix
addChangeOfBasisMatrixToFieldData(ugrid, m_basisX, m_basisY, m_basisZ,
m_boundingBox);