Newer
Older
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/IMDEventWorkspace.h"
#include "MantidAPI/MemoryManager.h"
#include "MantidAPI/Progress.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidGeometry/MDGeometry/MDHistoDimensionBuilder.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/CPUTimer.h"
#include "MantidKernel/DiskBuffer.h"
#include "MantidKernel/Matrix.h"
#include "MantidKernel/PropertyWithValue.h"
#include "MantidKernel/ThreadPool.h"
#include "MantidKernel/ThreadScheduler.h"
#include "MantidMDAlgorithms/LoadSQW.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidDataObjects/MDBox.h"
#include "MantidDataObjects/BoxControllerNeXusIO.h"
#include "MantidKernel/Memory.h"
using namespace Mantid::Kernel;
using namespace Mantid::API;
using Mantid::Geometry::OrientedLattice;
using namespace Mantid::DataObjects;
namespace Mantid {
namespace MDAlgorithms {
namespace {
//------------------------------------------------------------------------------------------------
/** Helper function allowing to typecast sequence of bytes into proper expected
*type.
* The input buffer is interpreted as the template type
*
* @param Buf -- the vector of characters, representing data to cast
* @param ind -- the starting position of first byte of data within the data
*buffer
* @returns the data type produced by type-casing proper sequence of bytes
*/
template <typename T> T interpretAs(std::vector<char> &Buf, size_t ind = 0) {
return *((reinterpret_cast<T *>(&Buf[ind])));
}
}
LoadSQW::LoadSQW()
: m_fileName(""), m_fileStream(),
m_prog(new Mantid::API::Progress(this, 0.05, 0.95, 100)),
m_outputFile(""), m_dataPositions(), m_boxSizes(), m_nDataPoints(0),
m_mdImageSize(0), m_nDims(0), m_nBins() {}
/**
* Return the confidence with this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadSQW::confidence(Kernel::FileDescriptor &descriptor) const {
// only .sqw can be considered
const std::string &extn = descriptor.extension();
if (extn.compare(".sqw") != 0)
return 0;
if (descriptor.isAscii()) {
return 10; // Low so that others may try
}
return 80; // probably it is sqw indeed
}
/// Destructor
LoadSQW::~LoadSQW() { delete m_prog; }
/// Provide wiki documentation.
/// Initialize the algorithm
void LoadSQW::init() {
std::vector<std::string> fileExtensions(1);
fileExtensions[0] = ".sqw";
declareProperty(new API::FileProperty("Filename", "", API::FileProperty::Load,
fileExtensions),
"File of type SQW format");
declareProperty(new API::WorkspaceProperty<API::IMDEventWorkspace>(
"OutputWorkspace", "", Kernel::Direction::Output),
"Output IMDEventWorkspace reflecting SQW data read-in.");
declareProperty(new Kernel::PropertyWithValue<bool>("MetadataOnly", false),
"Load Metadata without events.");
std::vector<std::string> fileExtensions2(1);
fileExtensions2[0] = ".nxs";
declareProperty(
new API::FileProperty("OutputFilename", "",
API::FileProperty::OptionalSave, fileExtensions2),
"If the input SQW file is too large to fit in memory, specify an output "
"NXS file.\n"
"The MDEventWorkspace will be create with this file as its back-end.");
}
/// Execute the algorithm
void LoadSQW::exec() {
m_fileName = std::string(getProperty("Filename"));
// Parse Extract metadata. Including data locations.
parseMetadata(m_fileName);
// Create a new output workspace.
MDEventWorkspace<MDEvent<4>, 4> *pWs = new MDEventWorkspace<MDEvent<4>, 4>;
Mantid::API::IMDEventWorkspace_sptr ws(pWs);
// Add dimensions onto workspace.
std::vector<Mantid::Geometry::MDHistoDimensionBuilder> DimVector;
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
readDNDDimensions(DimVector, false);
readSQWDimensions(DimVector);
addDimsToWs(pWs, DimVector);
// Set some reasonable values for the box controller
BoxController_sptr bc = pWs->getBoxController();
for (size_t i = 0; i < 4; i++) {
bc->setSplitInto(i, m_nBins[i]);
}
bc->setMaxDepth(1);
// Initialize the workspace.
pWs->initialize();
// Add oriented lattice.
addLattice(pWs);
// Start with a MDGridBox.
pWs->splitBox();
//
readBoxSizes();
// Save the empty WS and turn it into a file-backed MDEventWorkspace (on
// option)
m_outputFile = getPropertyValue("OutputFilename");
if (!m_outputFile.empty()) {
// set file backed;
MemoryStats stat;
if ((m_nDataPoints * sizeof(MDEvent<4>) * 2 / 1024) < stat.availMem())
g_log.notice() << "You have enough memory available to load the "
<< m_nDataPoints << " points into memory; this would be "
"faster than using a file back-end."
<< std::endl;
IAlgorithm_sptr saver =
this->createChildAlgorithm("SaveMD", 0.01, 0.05, true);
saver->setProperty("InputWorkspace", ws);
saver->setPropertyValue("Filename", m_outputFile);
// should think about it.
saver->setProperty("UpdateFileBackEnd", false);
saver->setProperty("MakeFileBacked", false);
saver->executeAsChildAlg();
m_prog->resetNumSteps(100, 0.05, 0.75);
// set file backed boxes
auto Saver = boost::shared_ptr<API::IBoxControllerIO>(
new DataObjects::BoxControllerNeXusIO(bc.get()));
bc->setFileBacked(Saver, m_outputFile);
pWs->getBox()->setFileBacked();
bc->getFileIO()->setWriteBufferSize(1000000);
} else {
MemoryStats stat;
if ((size_t(double(m_nDataPoints) * 1.5) * sizeof(MDEvent<4>) / 1024) >
stat.availMem())
g_log.warning()
<< "You may not have enough physical memory available to load the "
<< m_nDataPoints << " points into memory. You can cancel and specify "
"OutputFilename to load to a file back-end."
<< std::endl;
}
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
if (bc->isFileBacked()) {
std::cout << "File backed? " << bc->isFileBacked() << ". Cache "
<< bc->getFileIO()->getMemoryStr() << std::endl;
} else {
bool ff(false);
std::cout << "File backed? " << ff << ". Cache 0" << std::endl;
}
// Persist the workspace.
API::IMDEventWorkspace_sptr i_out = getProperty("OutputWorkspace");
if (i_out)
throw std::runtime_error(
"Cannot currently handle overwriting of an existing workspace.");
setProperty("OutputWorkspace", ws);
// Read events into the workspace.
bool bMetadataOnly = getProperty("MetadataOnly");
if (!bMetadataOnly)
readEvents(pWs);
progress(m_outputFile.empty() ? 0.96 : 0.76, "Refreshing cache");
pWs->refreshCache();
if (!m_outputFile.empty()) {
g_log.notice() << "Starting SaveMD to update the file back-end."
<< std::endl;
IAlgorithm_sptr saver = this->createChildAlgorithm("SaveMD", 0.76, 1.00);
saver->setProperty("InputWorkspace", ws);
saver->setProperty("UpdateFileBackEnd", true);
saver->executeAsChildAlg();
}
}
/// Add events after reading pixels/datapoints from file.
void LoadSQW::readEvents(
Mantid::DataObjects::MDEventWorkspace<MDEvent<4>, 4> *ws) {
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
size_t maxNPix = ~size_t(0);
if (m_nDataPoints > maxNPix) {
throw new std::runtime_error("Not possible to address all datapoints in "
"memory using this architecture ");
}
const size_t ncolumns = 9; // qx, qy, qz, en, s, err, irunid, idetid, ien
const size_t column_size =
4; // types stored as either float32 or unsigned integer (both 4byte).
const size_t column_size_2 = column_size * 2; // offset, gives qz
const size_t column_size_3 = column_size * 3; // offset, gives en
const size_t column_size_4 = column_size * 4; // offset, gives idet
// const size_t column_size_5 = column_size * 5; //offset, gives ien
const size_t column_size_6 = column_size * 6; // offset, gives irun
const size_t column_size_7 = column_size * 7; // offset, gives signal
const size_t column_size_8 = column_size * 8; // offset, gives error
const size_t pixel_width = ncolumns * column_size;
const size_t data_buffer_size = pixel_width * m_nDataPoints;
g_log.information() << m_nDataPoints << " data points in this SQW file."
<< std::endl;
// Load from the input file is smallish blocks
size_t blockSize = pixel_width * 1000000;
// Report progress once per block
int numBlocks = int((data_buffer_size + blockSize - 1) / blockSize);
m_prog->setNumSteps(numBlocks);
m_prog->setNotifyStep(0.1);
// For tracking when to split boxes
size_t eventsAdded = 0;
BoxController_sptr bc = ws->getBoxController();
DiskBuffer *dbuf(NULL);
if (bc->isFileBacked())
dbuf = bc->getFileIO();
for (int blockNum = 0; blockNum < numBlocks; blockNum++) {
// Start point in the file
size_t inputFileOffset = size_t(blockNum) * blockSize;
// Limit the size of the block
size_t currentBlockSize = blockSize;
if ((inputFileOffset + currentBlockSize) > data_buffer_size)
currentBlockSize = data_buffer_size - inputFileOffset;
// Load the block from the file
std::vector<char> Buffer = std::vector<char>(currentBlockSize);
this->m_fileStream.seekg(this->m_dataPositions.pix_start + inputFileOffset,
std::ios::beg);
this->m_fileStream.read(&Buffer[0], currentBlockSize);
// Go through each pixel in the input
int currentNumPixels = int(currentBlockSize / pixel_width);
eventsAdded += size_t(currentNumPixels);
// Add the events in parallel
PARALLEL_FOR_NO_WSP_CHECK()
for (int i = 0; i < currentNumPixels; i++) {
size_t current_pix = size_t(i * pixel_width);
coord_t centers[4] = {
interpretAs<float>(Buffer, current_pix),
interpretAs<float>(Buffer, current_pix + column_size),
interpretAs<float>(Buffer, current_pix + column_size_2),
interpretAs<float>(Buffer, current_pix + column_size_3)};
const float errorSQ =
interpretAs<float>(Buffer, current_pix + column_size_8);
ws->addEvent(MDEvent<4>(
interpretAs<float>(Buffer, current_pix + column_size_7), // Signal
static_cast<uint16_t>(interpretAs<float>(
Buffer, current_pix + column_size_6)), // run Index
static_cast<int32_t>(interpretAs<float>(
Buffer, current_pix + column_size_4)), // Detector Id
centers));
}
// MemoryStats stat;
// size_t bytesAvail = stat.availMem() * 1024;
// // Estimate how many extra bytes will (temporarily) be used when
// splitting events
// size_t bytesNeededToSplit = eventsAdded * sizeof(MDEvent<4>) / 2;
// Split:
// 1. When < 1 GB of memory is free
// 2. When too little memory might be available for the splitting operation
// 3. When enough events have been added that it makes sense
// 4. At the last block being added
// if ((bytesAvail < 1000000000) || (bytesAvail < bytesNeededToSplit)
// ||
// bc->shouldSplitBoxes(eventsAdded*2, lastNumBoxes) || (blockNum
// == numBlocks-1) )
if (eventsAdded > 19000000) {
g_log.information() << "Splitting boxes after " << eventsAdded
<< " events added." << std::endl;
Mantid::API::MemoryManager::Instance().releaseFreeMemory();
// This splits up all the boxes according to split thresholds and sizes.
Kernel::ThreadScheduler *ts = new ThreadSchedulerFIFO();
ThreadPool tp(ts);
ws->splitAllIfNeeded(ts);
tp.joinAll();
// Flush the cache - this will save things out to disk
if (dbuf)
dbuf->flushCache();
// Flush memory
Mantid::API::MemoryManager::Instance().releaseFreeMemory();
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// This will be correct optimized code after all.
//
// if (false)
// {
// std::vector<MDBoxBase<MDEvent<4>,4>*> boxes;
// ws->getBox()->getBoxes(boxes, 100, true);
// size_t modified = 0;
// size_t inmem = 0;
// size_t ondisk = 0;
// size_t events = 0;
// for (size_t i=0; i<boxes.size(); i++)
// {
// MDBox<MDEvent<4>,4>* box =
// dynamic_cast<MDBox<MDEvent<4>,4>*>(boxes[i]);
// if (box)
// {
// //box->save();
// if (box->dataAdded() || box->dataModified())
// modified++;
// if (box->getInMemory())
// inmem++;
// if (box->getOnDisk())
// ondisk++;
// events += box->getEventVectorSize();
// }
// }
// g_log.information() << modified << " of " << boxes.size() << "
// MDBoxes have data added or modified." << std::endl;
// g_log.information() << inmem << " MDBoxes are in memory." <<
// std::endl;
// //g_log.information() << ondisk << " MDBoxes are on disk." <<
// std::endl;
// g_log.information() << double(events)/1e6 << " million events in
// memory." << std::endl;
// }
// Report progress once per block.
m_prog->report();
}
Kernel::ThreadScheduler *ts = new ThreadSchedulerFIFO();
ThreadPool tp(ts);
ws->splitAllIfNeeded(ts);
tp.joinAll();
// Flush the cache - this will save things out to disk
if (dbuf)
dbuf->flushCache();
// Flush memory
Mantid::API::MemoryManager::Instance().releaseFreeMemory();
}
/**
Extract the b-matrix from a SQW file. Create experiment info with oriented
lattice and add to workspace.
@param ws : Workspace to modify.
*/
void LoadSQW::addLattice(
Mantid::DataObjects::MDEventWorkspace<MDEvent<4>, 4> *ws) {
std::vector<char> buf(
4 * (3 + 3)); // Where 4 = size_of(float) and 3 * 3 is size of b-matrix.
this->m_fileStream.seekg(this->m_dataPositions.geom_start, std::ios::beg);
this->m_fileStream.read(&buf[0], buf.size());
double a = static_cast<double>(interpretAs<float>(buf, 0));
double b = static_cast<double>(interpretAs<float>(buf, 4));
double c = static_cast<double>(interpretAs<float>(buf, 8));
double aa = static_cast<double>(interpretAs<float>(buf, 12));
double bb = static_cast<double>(interpretAs<float>(buf, 16));
double cc = static_cast<double>(interpretAs<float>(buf, 20));
ExperimentInfo_sptr info(new ExperimentInfo());
// set up the goniometer. All mdEvents (pixels) in Horace sqw file are in lab
// frame,
// Q units so general goniometer should provide unit rotation matrix
info->mutableRun().mutableGoniometer().makeUniversalGoniometer();
//
OrientedLattice latt(a, b, c, aa, bb, cc);
info->mutableSample().setOrientedLattice(&latt);
ws->addExperimentInfo(info);
}
void LoadSQW::buildMDDimsBase(
std::vector<Mantid::Geometry::MDHistoDimensionBuilder> &DimVector) {
std::vector<std::string> dimID(4, "qx");
std::vector<std::string> dimUnit(4, "A^-1");
std::vector<std::string> dimFrameName(4, "HKL");
dimID[1] = "qy";
dimID[2] = "qz";
dimID[3] = "en";
dimUnit[3] = "meV";
DimVector.resize(4);
for (size_t i = 0; i < 4; i++) {
DimVector[i].setId(dimID[i]);
DimVector[i].setUnits(dimUnit[i]);
DimVector[i].setName(dimID[i]);
DimVector[i].setFrameName(dimFrameName[i]);
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/// Add a dimension after reading info from file.
void LoadSQW::readDNDDimensions(
std::vector<Mantid::Geometry::MDHistoDimensionBuilder> &DimVectorOut,
bool arrangeByMDImage) {
// using Mantid::Geometry::MDHistoDimensionBuilder;
std::vector<Mantid::Geometry::MDHistoDimensionBuilder> DimVectorIn;
this->buildMDDimsBase(DimVectorIn);
std::vector<char> buf(4 * (3 + 3 + 4 + 16 + 4 + 2));
this->m_fileStream.seekg(this->m_dataPositions.geom_start, std::ios::beg);
this->m_fileStream.read(&buf[0], buf.size());
// skip allat and adlngldef
// interpret shifts
size_t i0 = 4 * (3 + 3);
// for(size_t i=0;i<this->m_nDims;i++){
// double val = (double)*((float*)(&buf[i0+i*4]));
// dscrptn.pDimDescription(i)->data_shift = val;
//}
// TODO: how to use it in our framework? -> it is B^-1 matrix possibly
// re-scaled
std::vector<double> u_to_Rlu(
4 * 4); // the matrix transforming from lab to crystal frame with scaling
i0 += 4 * 4;
// [data.u_to_rlu, count, ok, mess] = fread_catch(fid,[4,4],'float32'); if
// ~all(ok); return; end;
size_t ic = 0;
for (size_t i = 0; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
u_to_Rlu[ic] =
static_cast<double>(interpretAs<float>(buf, i0 + 4 * (i * 4 + j)));
ic++;
}
i0 += ic * 4;
Mantid::Kernel::DblMatrix UEmat(u_to_Rlu);
Mantid::Kernel::DblMatrix Rot(3, 3);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
Rot[i][j] = UEmat[i][j];
}
// dscrptn.setRotationMatrix(Rot);
// axis labels size
i0 += 4 * 4;
unsigned int nRows = interpretAs<uint32_t>(buf, i0);
unsigned int nCols = interpretAs<uint32_t>(buf, i0 + 4);
// read axis labelsg
buf.resize(nRows * nCols);
// [ulabel, count, ok, mess] = fread_catch(fid,[n(1),n(2)],'*char'); if
// ~all(ok); return; end;
this->m_fileStream.read(&buf[0], buf.size());
// data.ulabel=cellstr(ulabel)';
std::string name;
char symb;
name.resize(nCols);
for (unsigned int i = 0; i < nRows; i++) {
for (unsigned int j = 0; j < nCols; j++) {
symb = buf[i + j * nRows];
name[j] = symb;
// Trim string.
std::string sName(name);
boost::erase_all(sName, " ");
DimVectorIn[i].setName(sName);
}
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// resize for iax and npax;
buf.resize(4 * 4 * 3);
this->m_fileStream.read(&buf[0], 4);
unsigned int npax = interpretAs<uint32_t>(buf);
unsigned int niax = 4 - npax;
/*
[npax, count, ok, mess] = fread_catch(fid,1,'int32'); if ~all(ok); return;
end;
niax=4-npax;
if niax~=0
[data.iax, count, ok, mess] = fread_catch(fid,[1,niax],'int32'); if ~all(ok);
return; end;
[data.iint, count, ok, mess] = fread_catch(fid,[2,niax],'float32'); if
~all(ok); return; end;
else
data.iax=zeros(1,0); % create empty index of integration array in standard
form
data.iint=zeros(2,0);
end
*/
// axis counter
ic = 0;
;
std::vector<unsigned int> iax;
if (niax > 0) {
buf.resize(4 * (niax + 2 * niax));
iax.resize(niax);
this->m_fileStream.read(&buf[0], buf.size());
for (unsigned int i = 0; i < niax; i++) {
iax[i] = interpretAs<uint32_t>(buf, i * 4) - 1;
float min = interpretAs<float>(buf, 4 * (niax + i * 2));
float max =
interpretAs<float>(buf, 4 * (niax + i * 2 + 1)) * (1 + FLT_EPSILON);
DimVectorIn[ic].setNumBins(1);
DimVectorIn[ic].setMax(max);
DimVectorIn[ic].setMin(min);
ic++;
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// processing projection axis;
/*
if npax~=0
[data.pax, count, ok, mess] = fread_catch(fid,[1,npax],'int32'); if ~all(ok);
return; end;
psize=zeros(1,npax); % will contain number of bins along each dimension of
plot axes
for i=1:npax
[np,count,ok,mess] = fread_catch(fid,1,'int32'); if ~all(ok); return; end;
[data.p{i},count,ok,mess] = fread_catch(fid,np,'float32'); if ~all(ok);
return; end;
psize(i)=np-1;
end
[data.dax, count, ok, mess] = fread_catch(fid,[1,npax],'int32'); if ~all(ok);
return; end;
if length(psize)==1
psize=[psize,1]; % make size of a column vector
end
else
data.pax=zeros(1,0); % create empty index of plot axes
data.p=cell(1,0);
data.dax=zeros(1,0); % create empty index of plot axes
psize=[1,1]; % to hold a scalar
end
*/
std::vector<unsigned int> pax, dax;
if (npax > 0) {
//[data.pax, count, ok, mess] = fread_catch(fid,[1,npax],'int32'); if
//~all(ok); return; end;
this->m_fileStream.read(&buf[0], 4 * npax);
pax.resize(npax);
dax.resize(npax);
for (unsigned int i = 0; i < npax; i++) {
// projection axis indexes
pax[i] = interpretAs<uint32_t>(buf, 4 * i) - 1;
std::vector<char> axis_buffer(101 * 4);
this->m_fileStream.read(&axis_buffer[0], 4);
unsigned int nAxisPoints = interpretAs<uint32_t>(axis_buffer);
if (axis_buffer.size() < nAxisPoints * 4)
axis_buffer.resize(nAxisPoints * 4);
this->m_fileStream.read(&axis_buffer[0], 4 * nAxisPoints);
float min = interpretAs<float>(axis_buffer, 0);
float max = interpretAs<float>(axis_buffer, 4 * (nAxisPoints - 1)) *
(1 + FLT_EPSILON);
DimVectorIn[ic].setNumBins(nAxisPoints - 1);
DimVectorIn[ic].setMax(max);
DimVectorIn[ic].setMin(min);
ic++;
}
//[data.dax, count, ok, mess] = fread_catch(fid,[1,npax],'int32'); if
//~all(ok); return; end;
this->m_fileStream.read(&buf[0], 4 * npax);
for (unsigned int i = 0; i < npax; i++)
dax[i] = interpretAs<uint32_t>(buf, 4 * i) - 1;
}
if (arrangeByMDImage) {
// Place dimensions to output vector in the correct dimensions order;
size_t ic = 0;
DimVectorOut.resize(4);
for (size_t i = 0; i < npax; i++) {
DimVectorOut[ic] = DimVectorIn[pax[dax[i]]];
ic++;
for (size_t i = 0; i < niax; i++) {
DimVectorOut[ic] = DimVectorIn[iax[i]];
ic++;
}
} else // arrange according to sqw
{
DimVectorOut.assign(DimVectorIn.begin(), DimVectorIn.end());
}
// set up proper dimension bin numbers to use in further calculations
this->m_nBins.resize(4);
for (size_t i = 0; i < 4; i++) {
m_nBins[i] = DimVectorOut[i].getNumBins();
if (m_nBins[i] < 1)
m_nBins[i] = 1;
}
}
/// add range of dimensions to the workspace;
void LoadSQW::addDimsToWs(
Mantid::DataObjects::MDEventWorkspace<DataObjects::MDEvent<4>, 4> *ws,
std::vector<Mantid::Geometry::MDHistoDimensionBuilder> &DimVector) {
// Add dimensions to the workspace by invoking the dimension builders.
for (size_t i = 0; i < 4; i++) {
ws->addDimension(DimVector[i].create());
}
}
/// Add a dimension after reading info from file.
void LoadSQW::readSQWDimensions(
std::vector<Mantid::Geometry::MDHistoDimensionBuilder> &DimVectorOut) {
using Mantid::Geometry::MDHistoDimensionBuilder;
this->buildMDDimsBase(DimVectorOut);
std::vector<char> buf(4 * (4 + 4));
this->m_fileStream.seekg(this->m_dataPositions.min_max_start, std::ios::beg);
this->m_fileStream.read(&buf[0], buf.size());
for (unsigned int i = 0; i < 4; i++) {
float min = interpretAs<float>(buf, 4 * i * 2);
float max = interpretAs<float>(buf, 4 * (i * 2 + 1)) * (1 + FLT_EPSILON);
DimVectorOut[i].setNumBins(m_nBins[i]);
DimVectorOut[i].setMax(max);
DimVectorOut[i].setMin(min);
}
}
/*==================================================================================
Region: Functions in the following region are candidates for refactoring. Copied
from MD_FileHoraceReader
==================================================================================*/
/** Function provides seam on to access axillary functions ported from
MD_FileHoraceReader.
*/
void LoadSQW::parseMetadata(const std::string &fileName) {
if (m_fileStream.is_open())
m_fileStream.close();
m_fileStream.open(fileName.c_str(), std::ios::binary);
if (!m_fileStream.is_open())
throw(
Kernel::Exception::FileError("Can not open input sqw file", fileName));
std::vector<char> data_buffer;
m_fileStream.seekg(m_dataPositions.if_sqw_start);
data_buffer.resize(3 * 4);
m_fileStream.read(&data_buffer[0], 2 * 4);
this->m_nDims = interpretAs<uint32_t>(data_buffer);
m_dataPositions.parse_sqw_main_header(m_fileStream);
// go through all component headers and read them (or calculate their length)
std::streamoff next_position = m_dataPositions.component_headers_starts[0];
size_t nFiles = m_dataPositions.component_headers_starts.size();
for (size_t i = 0; i < nFiles; i++) {
m_dataPositions.component_headers_starts[i] = next_position;
next_position =
m_dataPositions.parse_component_header(m_fileStream, next_position);
}
m_dataPositions.detectors_start = next_position;
// get detectors
m_dataPositions.data_start = m_dataPositions.parse_sqw_detpar(
m_fileStream, m_dataPositions.detectors_start);
// calculate all other data fields locations;
m_dataPositions.parse_data_locations(m_fileStream, m_dataPositions.data_start,
m_nBins, m_nDataPoints);
}
m_boxSizes.resize(m_dataPositions.mdImageSize);
m_fileStream.seekg(m_dataPositions.n_cell_pix_start, std::ios::beg);
m_fileStream.read((char *)(&m_boxSizes[0]),
m_dataPositions.mdImageSize * sizeof(uint64_t));
}
// auxiliary functions
/**Block 1: Main_header: Parse SQW main data header
*@param dataStream -- the open file handler responsible for IO operations
**/
void dataPositions::parse_sqw_main_header(
std::ifstream &dataStream) { // we do not need this header at the moment ->
// just need to calculated its length;
std::vector<char> data_buffer(4 * 3);
dataStream.read(&data_buffer[0], 4);
unsigned int file_name_length = *((uint32_t *)(&data_buffer[0]));
// skip main header file name
dataStream.seekg(file_name_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_path_length = *((uint32_t *)(&data_buffer[0]));
// skip main header file path
dataStream.seekg(file_path_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_title = *((uint32_t *)(&data_buffer[0]));
// skip ws title
dataStream.seekg(file_title, std::ios_base::cur);
// identify number of file headers, contributed into the dataset
dataStream.read(&data_buffer[0], 4);
unsigned int nFiles = *((uint32_t *)(&data_buffer[0]));
/// allocate space for the component headers positions;
this->component_headers_starts.assign(nFiles, 0);
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
std::streamoff last_location = dataStream.tellg();
if (last_location < 0)
throw("IO error for input file at start of component headers; Can not "
"seek to last location");
if (nFiles > 0) {
this->component_headers_starts[0] = last_location;
}
}
/**Block 2: Header: Parse header of single SPE file
*@param dataStream -- the open file handler responsible for IO operations
*@param start_location -- initial file position of the header within the binary
*file
*
*@returns: the file location of the first byte behind this header
*/
std::streamoff dataPositions::parse_component_header(
std::ifstream &dataStream,
std::streamoff start_location) { // we do not need this header at the
// moment -> just calculating its length;
// or may be we do soon?
std::vector<char> data_buffer(8);
std::streamoff shift = start_location - dataStream.tellg();
// move to specified location, which should be usually 0;
dataStream.seekg(shift, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_name_length = *((uint32_t *)(&data_buffer[0]));
// skip component header file name
dataStream.seekg(file_name_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_path_length = *((uint32_t *)(&data_buffer[0]));
// skip component header file path
dataStream.seekg(file_path_length, std::ios_base::cur);
// move to by specified number of bytes, see Matlab header above;
dataStream.seekg(4 * (7 + 3 * 4), std::ios_base::cur);
// read number of energy bins;
dataStream.read(&data_buffer[0], 4);
unsigned int nEn_bins = *((uint32_t *)(&data_buffer[0]));
// skip energy values;
dataStream.seekg(4 * (nEn_bins), std::ios_base::cur);
// skip offsets and conversions;
dataStream.seekg(4 * (4 + 4 * 4 + 4), std::ios_base::cur);
// get labels matrix size;
dataStream.read(&data_buffer[0], 8);
unsigned int nRows = *((uint32_t *)(&data_buffer[0]));
unsigned int nCols = *((uint32_t *)(&data_buffer[4]));
// skip labels
dataStream.seekg(nRows * nCols, std::ios_base::cur);
std::streamoff end_location = dataStream.tellg();
return end_location;
}
/**Block 3: Detpar: parse positions of the contributed detectors. These
*detectors have to be the same for all contributing spe files
*@param dataStream -- the open file handler responsible for IO operations
*@param start_location -- initial file position of the detectors data within the
*binary file
*
*@returns: the file location of the first byte behind this header */
std::streamoff
dataPositions::parse_sqw_detpar(std::ifstream &dataStream,
std::streamoff start_location) { //
std::vector<char> data_buffer(8);
std::streamoff shift = start_location - dataStream.tellg();
// move to specified location, which should be usually 0;
dataStream.seekg(shift, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_name_length = *((uint32_t *)(&data_buffer[0]));
// skip component header file name
dataStream.seekg(file_name_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_path_length = *((uint32_t *)(&data_buffer[0]));
// skip component header file path
dataStream.seekg(file_path_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int num_detectors = *((uint32_t *)(&data_buffer[0]));
// skip detector information
dataStream.seekg(num_detectors * 6 * 4, std::ios_base::cur);
std::streamoff end_location = dataStream.tellg();
return end_location;
}
/**Block 4: Data: parse positions of the data fields
*@param dataStream -- the open file handler responsible for IO operations
*@param data_start -- Initial position of the data block4 within the data file
@param nBins -- the vector of bin sizes for MD image
@param nDataPoints -- number of pixels (MD events) contributing to the image
*/
void dataPositions::parse_data_locations(std::ifstream &dataStream,
std::streamoff data_start,
std::vector<size_t> &nBins,
uint64_t &nDataPoints) {
std::vector<char> data_buffer(12);
std::streamoff shift = data_start - dataStream.tellg();
// move to specified location, which should be usually 0;
dataStream.seekg(shift, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_name_length = *((uint32_t *)(&data_buffer[0]));
// skip dummy file name
dataStream.seekg(file_name_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int file_path_length = *((uint32_t *)(&data_buffer[0]));
// skip dummy file path
dataStream.seekg(file_path_length, std::ios_base::cur);
dataStream.read(&data_buffer[0], 4);
unsigned int data_title_length = *((uint32_t *)(&data_buffer[0]));
// skip data title
dataStream.seekg(data_title_length, std::ios_base::cur);
this->geom_start = dataStream.tellg();
dataStream.seekg(4 * (3 + 3 + 4 + 16 + 4), std::ios_base::cur);
// get label information and skip labels;
dataStream.read(&data_buffer[0], 8);
unsigned int n_labels = *((uint32_t *)(&data_buffer[0]));
unsigned int labels_length = *((uint32_t *)(&data_buffer[4]));
dataStream.seekg(n_labels * labels_length, std::ios_base::cur);
this->npax_start = dataStream.tellg();
dataStream.read(&data_buffer[0], 4);
unsigned int npax = *((uint32_t *)(&data_buffer[0]));
unsigned int niax = 4 - npax;
if (niax != 0) {
dataStream.seekg(3 * niax * 4, std::ios_base::cur);
}
if (npax != 0) {
nBins.resize(npax);
// skip projection axis
dataStream.seekg(npax * 4, std::ios_base::cur);
mdImageSize = 1;
for (unsigned int i = 0; i < npax; i++) {
dataStream.read(&data_buffer[0], 4);
unsigned int nAxisPoints = *((uint32_t *)(&data_buffer[0]));
nBins[i] = nAxisPoints - 1;
mdImageSize *= nBins[i];
dataStream.seekg(nAxisPoints * 4, std::ios_base::cur);
}
// skip display indexes;
dataStream.seekg(npax * 4, std::ios_base::cur);
}
// signal start:
this->s_start = dataStream.tellg();
// and skip to errors
dataStream.seekg(mdImageSize * 4, std::ios_base::cur);
// error start:
this->err_start = dataStream.tellg();
dataStream.seekg(mdImageSize * 4, std::ios_base::cur);
// dnd data file. we do not support this?
if (dataStream.eof()) {
nDataPoints = 0;
return;
// throw(std::invalid_argument("DND Horace datasets are not supported by
// Mantid"));
}
this->n_cell_pix_start = dataStream.tellg();
// skip to the end of pixels;
dataStream.seekg(mdImageSize * 8, std::ios_base::cur);
if (dataStream.eof()) {
nDataPoints = 0;
return;
// throw(std::invalid_argument("DND b+ Horace datasets are not supported by
// Mantid"));
}
this->min_max_start = dataStream.tellg();
// skip min-max start
//[data.urange,count,ok,mess] = fread_catch(fid,[2,4],'float32'); if ~all(ok);
// return; end;
dataStream.seekg(8 * 4, std::ios_base::cur);
if (dataStream.eof()) {
nDataPoints = 0;
return;
// throw(std::invalid_argument("SQW a- Horace datasets are not supported by
// Mantid"));
}
// skip redundant field and read nPix (number of data points)
dataStream.read(&data_buffer[0], 12);
nDataPoints = (size_t)(*((uint64_t *)(&data_buffer[4])));
this->pix_start = dataStream.tellg();
}
/*==================================================================================
EndRegion:
==================================================================================*/
} // endNamespace LoadSQWHelper
}