Newer
Older
.. _plotting:
====================
Matplotlib in Mantid
====================
.. contents:: Table of contents
:local:
Mantid can now use `Matplotlib <https://matplotlib.org/>`_ to produce figures.
There are several advantages of using this software package:
* it is python based, so it can easily be incorporated into Mantid scripts
* there is a large user community, and therefore excellent documentation and examples are available
* it is easy to change from plotting on the screen to produce publication quality plots in various image formats
While Matplotlib is using data arrays for inputs in the plotting routines,
it is now possible to also use several types on Mantid workspaces instead.
For a detailed list of functions that use workspaces, see the documentation
of the :ref:`mantid.plots <mantid.plots>` module.
This page is intended to provide examples about how to use different
Matplotlib commands for several types of common task that Mantid users are interested in.
To understand the matplotlib vocabulary, a useful tool is the `"anatomy of a figure"
<https://matplotlib.org/examples/showcase/anatomy.html>`_, also shown below.
.. plot::
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# This figure shows the name of several matplotlib elements composing a figure
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatter
np.random.seed(19680801)
X = np.linspace(0.5, 3.5, 100)
Y1 = 3+np.cos(X)
Y2 = 1+np.cos(1+X/0.75)/2
Y3 = np.random.uniform(Y1, Y2, len(X))
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1, aspect=1)
def minor_tick(x, pos):
if not x % 1.0:
return ""
return "%.2f" % x
ax.xaxis.set_major_locator(MultipleLocator(1.000))
ax.xaxis.set_minor_locator(AutoMinorLocator(4))
ax.yaxis.set_major_locator(MultipleLocator(1.000))
ax.yaxis.set_minor_locator(AutoMinorLocator(4))
ax.xaxis.set_minor_formatter(FuncFormatter(minor_tick))
ax.set_xlim(0, 4)
ax.set_ylim(0, 4)
ax.tick_params(which='major', width=1.0)
ax.tick_params(which='major', length=10)
ax.tick_params(which='minor', width=1.0, labelsize=10)
ax.tick_params(which='minor', length=5, labelsize=10, labelcolor='0.25')
ax.grid(linestyle="--", linewidth=0.5, color='.25', zorder=-10)
ax.plot(X, Y1, c=(0.25, 0.25, 1.00), lw=2, label="Blue signal", zorder=10)
ax.plot(X, Y2, c=(1.00, 0.25, 0.25), lw=2, label="Red signal")
ax.plot(X, Y3, linewidth=0,
marker='o', markerfacecolor='w', markeredgecolor='k')
ax.set_title("Anatomy of a figure", fontsize=20, verticalalignment='bottom')
ax.set_xlabel("X axis label")
ax.set_ylabel("Y axis label")
ax.legend()
def circle(x, y, radius=0.15):
from matplotlib.patches import Circle
from matplotlib.patheffects import withStroke
circle = Circle((x, y), radius, clip_on=False, zorder=10, linewidth=1,
edgecolor='black', facecolor=(0, 0, 0, .0125),
path_effects=[withStroke(linewidth=5, foreground='w')])
ax.add_artist(circle)
def text(x, y, text):
ax.text(x, y, text, backgroundcolor="white",
ha='center', va='top', weight='bold', color='blue')
# Minor tick
circle(0.50, -0.10)
text(0.50, -0.32, "Minor tick label")
# Major tick
circle(-0.03, 4.00)
text(0.03, 3.80, "Major tick")
# Minor tick
circle(0.00, 3.50)
text(0.00, 3.30, "Minor tick")
# Major tick label
circle(-0.15, 3.00)
text(-0.15, 2.80, "Major tick label")
# X Label
circle(1.80, -0.27)
text(1.80, -0.45, "X axis label")
# Y Label
circle(-0.27, 1.80)
text(-0.27, 1.6, "Y axis label")
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Title
circle(1.60, 4.13)
text(1.60, 3.93, "Title")
# Blue plot
circle(1.75, 2.80)
text(1.75, 2.60, "Line\n(line plot)")
# Red plot
circle(1.20, 0.60)
text(1.20, 0.40, "Line\n(line plot)")
# Scatter plot
circle(3.20, 1.75)
text(3.20, 1.55, "Markers\n(scatter plot)")
# Grid
circle(3.00, 3.00)
text(3.00, 2.80, "Grid")
# Legend
circle(3.70, 3.80)
text(3.70, 3.60, "Legend")
# Axes
circle(0.5, 0.5)
text(0.5, 0.3, "Axes")
# Figure
circle(-0.3, 0.65)
text(-0.3, 0.45, "Figure")
color = 'blue'
ax.annotate('Spines', xy=(4.0, 0.35), xycoords='data',
xytext=(3.3, 0.5), textcoords='data',
weight='bold', color=color,
arrowprops=dict(arrowstyle='->',
connectionstyle="arc3",
color=color))
ax.annotate('', xy=(3.15, 0.0), xycoords='data',
xytext=(3.45, 0.45), textcoords='data',
weight='bold', color=color,
arrowprops=dict(arrowstyle='->',
connectionstyle="arc3",
color=color))
ax.text(4.0, -0.4, "Made with http://matplotlib.org",
fontsize=10, ha="right", color='.5')
Here are some of the highlights:
* **Figure** is the main container in matplotlib. You can think of it as the page
* **Axes** is the coordinate system. It contains most of the figure elements, such as Axis, Line2D, Text.
One can have multiple Axes objects in one Figure
* **Axis** is the container for the ticks and labels for the x and y axis of the plot
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
There are two main ways that one can visualize images produced by matplotlib. The first one
is to pop up a window with the required graph. For that, we use the `show()` function of the figure.
.. code-block:: python
import matplotlib.pyplot as plt
fig,ax=plt.subplots()
#some code to generate figure
fig.show()
If one wants to save the output, the figure object has a function called `savefig`.
The main argument of savefig is the filename. Matplotlib will figure out the format of the figure
from the file extension. The 'png', 'ps', 'eps', and 'pdf' extensions will work with
almost any backend. For more information, see the documentation of
`Figure.savefig <https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.savefig>`_
Just replace the code above with:
.. code-block:: python
import matplotlib.pyplot as plt
fig,ax=plt.subplots()
#some code to generate figure
fig.savefig('plot1.png')
fig.savefig('plot1.eps')
Sometimes one wants to save a multi-page pdf document. Here is how to do this:
.. code-block:: python
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
with PdfPages('/home/andrei/Desktop/multipage_pdf.pdf') as pdf:
#page1
fig,ax=plt.subplots()
ax.set_title('Page1')
pdf.savefig(fig)
#page2
fig,ax=plt.subplots()
ax.set_title('Page2')
pdf.savefig(fig)
Simple plots
For matrix workspaces, if we use the `mantid` projection, one can plot the data in a similar
fashion as the plotting of arrays in matplotlib. Moreover, one can combine the two in the same figure
.. plot::
:include-source:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import CreateWorkspace
# Create a workspace that has a Gaussian peak
x = np.arange(20)
y0 = 10.+50*np.exp(-(x-10)**2/20)
err=np.sqrt(y0)
y = 10.+50*np.exp(-(x-10)**2/20)
y += err*np.random.normal(size=len(err))
err = np.sqrt(y)
w = CreateWorkspace(DataX=x, DataY=y, DataE=err, NSpec=1, UnitX='DeltaE')
# Plot - note that the projection='mantid' keyword is passed to all axes
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
ax.errorbar(w,'rs') # plot the workspace with errorbars, using red squares
ax.plot(x,y0,'k-', label='Initial guess') # plot the initial guess with black line
ax.legend() # show the legend
Some data should be visualized as two dimensional colormaps
.. plot::
:include-source:
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import Load, ConvertToMD, BinMD, ConvertUnits, Rebin
from matplotlib.colors import LogNorm
# generate a nice 2D multi-dimensional workspace
data = Load('CNCS_7860')
data = ConvertUnits(InputWorkspace=data,Target='DeltaE', EMode='Direct', EFixed=3)
data = Rebin(InputWorkspace=data, Params='-3,0.025,3', PreserveEvents=False)
md = ConvertToMD(InputWorkspace=data,
QDimensions='|Q|',
dEAnalysisMode='Direct')
sqw = BinMD(InputWorkspace=md,
AlignedDim0='|Q|,0,3,100',
AlignedDim1='DeltaE,-3,3,100')
#2D plot
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
c = ax.pcolormesh(sqw, norm=LogNorm())
cbar=fig.colorbar(c)
cbar.set_label('Intensity (arb. units)') #add text to colorbar
One can then change properties of the plot. Here is an example that
changes the label of the data, changes the label of the x and y axis,
changes the limits for the y axis, adds a title, change tick orientations,
and adds a grid
.. plot::
:include-source:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import CreateWorkspace
# Create a workspace that has a Gaussian peak
x = np.arange(20)
y0 = 10.+50.*np.exp(-(x-10.)**2/20.)
y = 10.+50*np.exp(-(x-10)**2/20.)
y += err*np.random.normal(size=len(err))
err = np.sqrt(y)
w = CreateWorkspace(DataX=x, DataY=y, DataE=err, NSpec=1, UnitX='DeltaE')
# Plot - note that the projection='mantid' keyword is passed to all axes
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
ax.errorbar(w,'rs', label='Data')
ax.plot(x,y0,'k-', label='Initial guess')
ax.legend()
ax.set_xlabel('Better energy estimate ($10^3\mu eV$)')
ax.set_ylabel('Neutron counts')
ax.set_ylim(-10,100)
ax.set_title('Gaussian example')
ax.tick_params(axis='x', direction='in')
ax.tick_params(axis='y', direction='out')
ax.grid(True)
Let's create now a figure with two panels. In the upper part we show the workspace as
above, but we add a fit, In the bottom part we add the difference.
.. plot::
:include-source:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import CreateWorkspace, Fit
# Create a workspace that has a Gaussian peak
x = np.arange(20)
y0 = 10.+50*np.exp(-(x-10)**2/20)
err=np.sqrt(y0)
y = 10.+50*np.exp(-(x-10)**2/20)
y += err*np.random.normal(size=len(err))
err = np.sqrt(y)
w = CreateWorkspace(DataX=x, DataY=y, DataE=err, NSpec=1, UnitX='DeltaE')
result = Fit(Function='name=LinearBackground,A0=10,A1=0.;name=Gaussian,Height=60.,PeakCentre=10.,Sigma=3.',
InputWorkspace='w',
Output='w',
OutputCompositeMembers=True)
# The handle to the output workspace is result.OutputWorkspace. The first spectrum is the data,
# the second is the fit, the third is the difference. Subsequent spectra are the calculated
# functions of each of the components of the fit (here LinearBackground and Gaussian)
# Note that the difference spectrum has 0 errors. One can copy the errors from data
result.OutputWorkspace.setE(2,result.OutputWorkspace.readE(0))
fig, [ax_top, ax_bottom] = plt.subplots(figsize=(9, 6),
sharex=True,
gridspec_kw={'height_ratios':[2,1]},
subplot_kw={'projection':'mantid'})
ax_top.errorbar(result.OutputWorkspace,'rs',wkspIndex=0, label='Data')
ax_top.plot(result.OutputWorkspace,'b-',wkspIndex=1, label='Fit')
ax_top.legend()
ax_top.set_xlabel('')
ax_top.set_ylabel('Neutron counts')
ax_top.tick_params(axis='both', direction='in')
ax_bottom.errorbar(result.OutputWorkspace,'ko',wkspIndex=2)
ax_bottom.tick_params(axis='both', direction='in')
ax_bottom.set_ylabel('Difference')
fig.tight_layout()
One can do twin axes as well:
.. plot::
:include-source:
import numpy as np
import matplotlib.pyplot as plt
from mantid.simpleapi import CreateWorkspace
from mantid import plots
# Create some mock data
t = np.arange(0.01, 10.0, 0.01)
data1 = np.exp(t)
data2 = np.sin(2 * np.pi * t)
ws1=CreateWorkspace(t,data1,UnitX='MomentumTransfer')
ws2=CreateWorkspace(t,data2,UnitX='MomentumTransfer')
fig, ax1 = plt.subplots(subplot_kw={'projection':'mantid'})
ax1.plot(ws1,'r-')
ax1.set_ylabel('exp', color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx()
ax2.plot(ws2, color=color)
ax2.set_ylabel('sin', color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout()
Custom Color Cycle (Line / 1D plots)
####################################
The Default Color Cycle doesn't have to be used. Here is an example where a Custom Color Cycle is chosen. Make sure to fill the list `custom_colors` with either the HTML codes or recognised names for the desired colours.
Both can be found `online <https://www.rapidtables.com/web/color/html-color-codes.html>`_.
from __future__ import (absolute_import, division, print_function, unicode_literals)
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import *
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color'] # 10 colors in default cycle
'''Change the following two parameters as you wish'''
custom_colors = ['#0000ffff', 'salmon','#00ff00ff'] # I've chosen Blue, Salmon, Green
fig = plt.figure(figsize = (10,10))
ax1 = plt.subplot(211,projection='mantid')
for i in range(Number):
ax1.plot(ws, specNum = i+1, color=colors[i%len(colors)])
ax1.set_title('Default')
ax1.legend()
ax2 = plt.subplot(212,projection='mantid')
for i in range(Number):
ax2.plot(ws, specNum= i+1, color=custom_colors[i%len(custom_colors)])
ax2.set_title('Custom')
ax2.legend()
fig.suptitle('Line Plots: Color Cycle', fontsize='x-large')
#fig.show()
Custom Colormap (MantidPlot)
############################
In MantidPlot, a Custom Colormap (256 entries of Red, Green and Blue values [0-255 for each]) can be created and saved with:
from __future__ import (absolute_import, division, print_function, unicode_literals)
from mantid.simpleapi import *
import matplotlib.pyplot as plt
import numpy as np
r = np.zeros(256)
g = np.zeros(256)
'''Control how the RGB values change throughout the Colormap'''
r[i] = i #linear increase in Red
g[i] = 255 - i #linear decrease in Green
f = open("C:\MantidInstall\colormaps\GreenRed.map","w+") #Change the .map filename as you wish!
for i in range(256):
f.write(str(int(r[i])))
f.write(' ')
f.write(str(int(g[i])))
Then open up any dataset (such as EMU00020884.nxs from the `TrainingCourseData <https://sourceforge.net/projects/mantid/files/Sample%20Data/TrainingCourseData.zip/download>`_) and produce a Colorfill plot. Change the Colormap by following `these instructions <https://docs.mantidproject.org/nightly/tutorials/mantid_basic_course/loading_and_displaying_data/04_displaying_2D_data.html#changing-the-colour-map>`_ and selecting the newly created `Greenred.map`.
This New Colormap is saved within the MantidInstall folder so it can be used without re-running this script!
Custom Colormap (MantidWorkbench)
#################################
You can view the premade Colormaps `here <https://matplotlib.org/2.2.3/gallery/color/colormap_reference.html?highlight=colormap>`_.
These Colormaps can be registered and remain for the current session, but need to be rerun if Mantid has been reopened. Choose the location to Save your Colormap file wisely, outside of your MantidInstall folder!
The following methods show how to Load, Convert from MantidPlot format, Create from Scratch and Visualise a Custom Colormap.
- If you already have a Colormap file in an (N by 4) format, with all values between 0 and 1, then use:
*1a. Load Colormap and Register*
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
Cmap_Name = 'Beach' # Colormap name
Loaded_Cmap = np.loadtxt("C:\Path\to\File\Filename.txt")
# Register the Loaded Colormap
Listed_CustomCmap = ListedColormap(Loaded_Cmap, name=Cmap_Name)
plt.register_cmap(name=Cmap_Name, cmap= Listed_CustomCmap)
# Create and register the reverse colormap
Res = len(Loaded_Cmap)
Reverse = np.zeros((Res,4))
for i in range(Res):
for j in range(4):
Reverse[i][j] = Loaded_Cmap[Res-(i+1)][j]
Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)
- If you have a Colormap file in a MantidPlot format (N by 3) with all values between 0 and 255, firstly **rename the file extension from .map to .txt**, then use:
*1b. Convert MantidPlot Colormap and Register*
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
Cmap_Name = 'Beach'
Loaded_Cmap = np.loadtxt("/Path/to/file/Beach.txt")
Res = len(Loaded_Cmap)
Cmap = np.zeros((Res,4))
for i in range(Res):
'''Normalise RGB values, Add 4th column alpha set to 1'''
for j in range(3):
Cmap[i][j] = float(Loaded_Cmap[i][j]) / 255
Cmap[i][3] = 1
'''Checks all values b/w 0 and 1'''
for j in range(4):
if Cmap[i][j] > 1:
print Cmap[i]
raise ValueError('Values must be between 0 and 1, one of the above is > 1')
if Cmap[i][j] < 0:
print Cmap[i]
raise ValueError('Values must be between 0 and 1, one of the above is negative')
else:
pass
#np.savetxt("C:\Path\to\File\Filename.txt",Cmap) #uncomment to save to file
# Register the Loaded Colormap
Listed_CustomCmap = ListedColormap(Cmap, name=Cmap_Name)
plt.register_cmap(name=Cmap_Name, cmap= Listed_CustomCmap)
# Create and register the reverse colormap
Reverse = np.zeros((Res,4))
for i in range(Res):
for j in range(4):
Reverse[i][j] = Cmap[Res-(i+1)][j]
Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)
- To Create a Colormap from scratch, use:
*1c. Create and Register*
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
import numpy as np
Cmap_Name = 'Beach' # Colormap name
Res = 500 # Resolution of your Colormap (number of steps in colormap)
Re = Res-1
Cmap = np.zeros((Res,4))
for i in range(Res):
'''Input functions inside float(), Divide by Res to normalise'''
Cmap[i][0] = float(Res) / Res #Red #just 1
Cmap[i][1] = float(i) / Re #Green #+ve i divisible by Res-1 = Re
Cmap[i][2] = float(Res-i)**2 / Res**2 #Blue #Make sure Norm_factor correct
Cmap[i][3] = 1
'''Checks all values b/w 0 and 1'''
for j in range(4):
if Cmap[i][j] > 1:
print Cmap[i]
raise ValueError('Values must be between 0 and 1, one of the above is > 1')
if Cmap[i][j] < 0:
print Cmap[i]
raise ValueError('Values must be between 0 and 1, one of the above is Negative')
else:
pass
#np.savetxt("C:\Path\to\File\Filename.txt",Cmap) #uncomment to save to file
Listed_CustomCmap = ListedColormap(Cmap, name = Cmap_Name)
plt.register_cmap(name = Cmap_Name, cmap = Listed_CustomCmap)
# Create and register the reverse colormap
Reverse = np.zeros((Res,4))
for i in range(Res):
for j in range(4):
Reverse[i][j] = Cmap[Res-(i+1)][j]
Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)
Now the Custom Colormap has been registered, right-click on a workspace and produce a colorfill plot. In Figure Options (Gear Icon in Plot Figure), under the Images Tab, you can use the drop down-menu to select the new Colormap, and use the check-box to select its Reverse!
- Otherwise, use a script like this (from above in Section "Simple Plots") to plot with your new Colormap:
*2. Plot New Colormap* (change the "cmap" name in line 12 accordingly)
from mantid.simpleapi import Load, ConvertToMD, BinMD, ConvertUnits, Rebin
from matplotlib.colors import LogNorm
data = Load('CNCS_7860')
data = ConvertUnits(InputWorkspace=data,Target='DeltaE', EMode='Direct', EFixed=3)
data = Rebin(InputWorkspace=data, Params='-3,0.025,3', PreserveEvents=False)
md = ConvertToMD(InputWorkspace=data,QDimensions='|Q|',dEAnalysisMode='Direct')
sqw = BinMD(InputWorkspace=md,AlignedDim0='|Q|,0,3,100',AlignedDim1='DeltaE,-3,3,100')
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
c = ax.pcolormesh(sqw, cmap='Beach', norm=LogNorm())
cbar=fig.colorbar(c)
cbar.set_label('Intensity (arb. units)') #add text to colorbar
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
.. plot::
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
import numpy as np
Cmap_Name = 'Beach' # Colormap name
Res = 500 # Resolution of your Colormap (number of steps in colormap)
Re = Res-1
Cmap = np.zeros((Res,4))
for i in range(Res):
'''Input functions inside float(), Divide by Res to normalise'''
Cmap[i][0] = float(Res) / Res #Red #just 1
Cmap[i][1] = float(i) / Re #Green #+ve i divisible by Res-1 = Re
Cmap[i][2] = float(Res-i)**2 / Res**2 #Blue #Make sure Norm_factor correct
Cmap[i][3] = 1
'''Checks all values b/w 0 and 1'''
for j in range(4):
if Cmap[i][j] > 1:
print Cmap[i]
raise ValueError('Values must be between 0 and 1, one of the above is > 1')
if Cmap[i][j] < 0:
print Cmap[i]
raise ValueError('Values must be between 0 and 1, one of the above is Negative')
else:
pass
#np.savetxt("C:\Path\to\File\Filename.txt",Cmap) #uncomment to save to file
Listed_CustomCmap = ListedColormap(Cmap, name = Cmap_Name)
plt.register_cmap(name = Cmap_Name, cmap = Listed_CustomCmap)
# Create and register the reverse colormap
Reverse = np.zeros((Res,4))
for i in range(Res):
for j in range(4):
Reverse[i][j] = Cmap[Res-(i+1)][j]
Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)
from mantid.simpleapi import Load, ConvertToMD, BinMD, ConvertUnits, Rebin
from mantid import plots
from matplotlib.colors import LogNorm
data = Load('CNCS_7860')
data = ConvertUnits(InputWorkspace=data,Target='DeltaE', EMode='Direct', EFixed=3)
data = Rebin(InputWorkspace=data, Params='-3,0.025,3', PreserveEvents=False)
md = ConvertToMD(InputWorkspace=data,QDimensions='|Q|',dEAnalysisMode='Direct')
sqw = BinMD(InputWorkspace=md,AlignedDim0='|Q|,0,3,100',AlignedDim1='DeltaE,-3,3,100')
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
c = ax.pcolormesh(sqw, cmap='Beach', norm=LogNorm())
cbar=fig.colorbar(c)
cbar.set_label('Intensity (arb. units)') #add text to colorbar
#fig.show()
Colormaps can also be created with the `colormap package <https://colormap.readthedocs.io/en/latest/>`_ or by `concatenating existing colormaps <https://matplotlib.org/3.1.0/tutorials/colors/colormap-manipulation.html>`_.
The :func:`mantid.plots.MantidAxes.plot<mantid.plots.MantidAxes.plot>` function can show sample logs. By default,
the time axis represents the time since the first proton charge pulse (the
beginning of the run), but one can also plot absolute time using `FullTime=True`
.. plot::
:include-source:
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import Load
w=Load('CNCS_7860')
fig = plt.figure()
ax1 = fig.add_subplot(211,projection='mantid')
ax2 = fig.add_subplot(212,projection='mantid')
ax1.plot(w, LogName='ChopperStatus5')
ax1.set_title('From run start')
ax2.plot(w, LogName='ChopperStatus5',FullTime=True)
ax2.set_title('Absolute time')
fig.tight_layout()
Note that the parasite axes in matplotlib do not accept the projection keyword.
So one needs to use :func:`mantid.plots.plotfunctions.plot<mantid.plots.plotfunctions.plot>` instead.
.. plot::
:include-source:
import matplotlib.pyplot as plt
from mantid import plots
from mantid.simpleapi import Load
w=Load('CNCS_7860')
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
ax.plot(w,LogName='ChopperStatus5')
axt=ax.twiny()
plots.plotfunctions.plot(axt,w,LogName='ChopperStatus5', FullTime=True)
One common type of a slightly more complex figure involves drawing an inset.
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import matplotlib.pyplot as plt
import numpy as np
from mantid import plots
from mantid.simpleapi import CreateWorkspace, FFT
from matplotlib import rcParams
import warnings
x=np.linspace(0,10,250)
y=np.cos(2*np.pi*1.1*x)*np.exp(-x/7.)
err=np.sqrt(0.01+x/200.)
w=CreateWorkspace(x,y,err,UnitX='tof')
fft=FFT(w)
# make all ticks point in
rcParams['xtick.direction'] = 'in'
rcParams['ytick.direction'] = 'in'
fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
ax.errorbar(w,'ks')
ax.set_ylabel('Asymmetry')
ax.set_ylim(-1.5,2)
ax_inset=fig.add_axes([0.7,0.72,0.2,0.2],projection='mantid')
ax_inset.plot(fft,specNum=6)
ax_inset.set_xlim(0,2)
ax_inset.set_xlabel('Frequency (MHz)')
ax_inset.set_ylabel('|FFT|')
# note that thight_layout will produce a warning here "This figure includes
# Axes that are not compatible with tight_layout, so its results might be incorrect."
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
fig.tight_layout()
#fig.show()
Plotting dispersion curves on multiple panels can also be done using matplotlib:
.. plot::
:include-source:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
from mantid.simpleapi import CreateMDHistoWorkspace
from mantid import plots
q = np.arange(0,0.333,0.01)
e = np.arange(0,60)
x,y = np.meshgrid(q,e)
omega_hh = 20. * np.sin(np.pi*x*1.5)
I_hh = np.exp(-x*5.)
signal = I_hh * np.exp(-(y-omega_hh)**2)
signal[y>25+100*x**2]=np.nan
ws1=CreateMDHistoWorkspace(Dimensionality=2,
Extents='0,0.3333,0,60',
SignalInput=signal,
ErrorInput=np.sqrt(signal),
NumberOfBins='{0},{1}'.format(len(q),len(e)),
Names='Dim1,Dim2',
Units='MomentumTransfer,EnergyTransfer')
# K to M
q = np.arange (0.333,0.5, 0.01)
x,y = np.meshgrid(q,e)
omega_hm2h=20. * np.cos(np.pi*(x-0.333))
signal = np.exp(-(y-omega_hm2h)**2)
signal[y>35]=np.nan
ws2=CreateMDHistoWorkspace(Dimensionality=2,
Extents='0.3333,0.5,0,60',
SignalInput=signal,
ErrorInput=np.sqrt(signal),
NumberOfBins='{0},{1}'.format(len(q),len(e)),
Names='Dim1,Dim2',
Units='MomentumTransfer,EnergyTransfer')
d=6.7
a=2.454
#Gamma is (0,0,0)
#A is (0,0,1/2)
#K is (1/3,1/3,0)
#M is (1/2,0,0)
gamma_a=np.pi/d
gamma_m=2.*np.pi/np.sqrt(3.)/a
m_k=2.*np.pi/3/a
gamma_k=4.*np.pi/3/a
gs = GridSpec(1, 4,
width_ratios=[gamma_k,m_k,gamma_m,gamma_a],
wspace=0)
ax1 = plt.subplot(gs[0],projection='mantid')
ax2 = plt.subplot(gs[1],sharey=ax1,projection='mantid')
ax3 = plt.subplot(gs[2],sharey=ax1)
ax4 = plt.subplot(gs[3],sharey=ax1)
ax1.set_xlim(0,1./3)
ax1.set_ylim(0.,40.)
ax1.set_title(r'$[\epsilon,\epsilon,0], 0 \leq \epsilon \leq 1/3$')
ax1.set_xticks([0,1./3])
ax1.set_xticklabels(['$\Gamma$','$K$'])
#ax1.spines['right'].set_visible(False)
ax1.tick_params(direction='in')
ax2.get_yaxis().set_visible(False)
ax2.set_xlim(1./3,1./2)
ax2.set_title(r'$[1/3+\epsilon,1/3-2\epsilon,0], 0 \leq \epsilon \leq 1/6$')
ax2.set_xticks([1./2])
ax2.set_xticklabels(['$M$'])
#ax2.spines['left'].set_visible(False)
ax2.tick_params(direction='in')
#invert axis
ax3.set_xlim(1./2,0)
ax3.get_yaxis().set_visible(False)
ax3.set_title(r'$[\epsilon,0,0], 1/2 \geq \epsilon \geq 0$')
ax3.set_xticks([0])
ax3.set_xticklabels(['$\Gamma$'])
ax3.tick_params(direction='in')
ax4.set_xlim(0,1./2)
ax4.get_yaxis().set_visible(False)
ax4.set_title(r'$[0,0,\epsilon], 0 \leq \epsilon \leq 1/2$')
ax4.set_xticks([1./2])
ax4.set_xticklabels(['$A$'])
ax4.tick_params(direction='in')
It is possible to alter the default appearance of Matplotlib plots, e.g. linewidths, label sizes,
colour cycles etc. This is most readily achieved by setting the ``rcParams`` at the start of a
Mantid Workbench session. The example below shows a plot with the default line width, followed be resetting the parameters with ``rcParams``. An example with many of the
editable parameters is available at `the Matplotlib site <https://matplotlib.org/users/customizing.html>`_.
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
.. plot::
:include-source:
import numpy as np
import matplotlib.pyplot as plt
# Set up the data
x = np.linspace(0, 2 * np.pi)
offsets = np.linspace(0, 2*np.pi, 4, endpoint=False)
# Create array with shifted-sine curve along each column
yy = np.transpose([np.sin(x + phi) for phi in offsets])
# Plot the data
fig, ax = plt.subplots()
ax.plot(yy)
## Reset the parameters
import matplotlib as mpl
mpl.rcParams['lines.linewidth'] = 2.0
mpl.rcParams['axes.grid'] = True
mpl.rcParams['axes.facecolor'] = (0.95, 0.95, 0.95)
mpl.rcParams['grid.linestyle'] = '--'
# Plot the data
fig, ax = plt.subplots()
ax.plot(yy)
For much more on customising the graph appearance see the `Matplotlib documentation
<https://matplotlib.org/users/dflt_style_changes.html>`_.
A list of some common properties you might want to change and the keywords to set:
+--------------------+-------------------------+------------+
+--------------------+-------------------------+------------+
| Error bar cap | ``errorbar.capsize`` | 0 |
+--------------------+-------------------------+------------+
| Line width | ``lines.linewidth`` | 1.25 |
+--------------------+-------------------------+------------+
| Grid on/off | ``axes.grid`` | False |
+--------------------+-------------------------+------------+
| Ticklabel size | ``xtick.labelsize`` | medium |
| | ``ytick.labelsize`` | |
+--------------------+-------------------------+------------+
| Minor ticks on/off | ``xtick.minor.visible`` | False |
| | ``ytick.minor.visible`` | |
+--------------------+-------------------------+------------+
| Face colour | ``axes.facecolor`` | white |
+--------------------+-------------------------+------------+
| Font type | ``font.family`` | sans-serif |
+--------------------+-------------------------+------------+
A much fuller list of properties is avialble `in the Matplotlib documentation
<https://matplotlib.org/users/customizing.html>`_.