Skip to content
Snippets Groups Projects
index.rst 32.6 KiB
Newer Older
DanielMurphy22's avatar
DanielMurphy22 committed
====================
Matplotlib in Mantid
====================

.. contents:: Table of contents
    :local:

DanielMurphy22's avatar
DanielMurphy22 committed
Introduction
------------
Mantid can now use `Matplotlib <https://matplotlib.org/>`_ to produce figures.
There are several advantages of using this software package:

* it is python based, so it can easily be incorporated into Mantid scripts
* there is a large user community, and therefore excellent documentation and examples are available
* it is easy to change from plotting on the screen to produce publication quality plots in various image formats

While Matplotlib is using data arrays for inputs in the plotting routines,
it is now possible to also use several types on Mantid workspaces instead.
luz.paz's avatar
luz.paz committed
For a detailed list of functions that use workspaces, see the documentation
of the :ref:`mantid.plots <mantid.plots>` module.

This page is intended to provide examples about how to use different
Matplotlib commands for several types of common task that Mantid users are interested in.

To understand the matplotlib vocabulary, a useful tool is the `"anatomy of a figure"
<https://matplotlib.org/examples/showcase/anatomy.html>`_, also shown below.

.. plot::
   # This figure shows the name of several matplotlib elements composing a figure
   import numpy as np
   import matplotlib.pyplot as plt
   from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatter

   np.random.seed(19680801)

   X = np.linspace(0.5, 3.5, 100)
   Y1 = 3+np.cos(X)
   Y2 = 1+np.cos(1+X/0.75)/2
   Y3 = np.random.uniform(Y1, Y2, len(X))

   fig = plt.figure(figsize=(8, 8))
   ax = fig.add_subplot(1, 1, 1, aspect=1)

   def minor_tick(x, pos):
       if not x % 1.0:
           return ""
       return "%.2f" % x

   ax.xaxis.set_major_locator(MultipleLocator(1.000))
   ax.xaxis.set_minor_locator(AutoMinorLocator(4))
   ax.yaxis.set_major_locator(MultipleLocator(1.000))
   ax.yaxis.set_minor_locator(AutoMinorLocator(4))
   ax.xaxis.set_minor_formatter(FuncFormatter(minor_tick))

   ax.set_xlim(0, 4)
   ax.set_ylim(0, 4)

   ax.tick_params(which='major', width=1.0)
   ax.tick_params(which='major', length=10)
   ax.tick_params(which='minor', width=1.0, labelsize=10)
   ax.tick_params(which='minor', length=5, labelsize=10, labelcolor='0.25')

   ax.grid(linestyle="--", linewidth=0.5, color='.25', zorder=-10)

   ax.plot(X, Y1, c=(0.25, 0.25, 1.00), lw=2, label="Blue signal", zorder=10)
   ax.plot(X, Y2, c=(1.00, 0.25, 0.25), lw=2, label="Red signal")
   ax.plot(X, Y3, linewidth=0,
           marker='o', markerfacecolor='w', markeredgecolor='k')

   ax.set_title("Anatomy of a figure", fontsize=20, verticalalignment='bottom')
   ax.set_xlabel("X axis label")
   ax.set_ylabel("Y axis label")

   ax.legend()


   def circle(x, y, radius=0.15):
       from matplotlib.patches import Circle
       from matplotlib.patheffects import withStroke
       circle = Circle((x, y), radius, clip_on=False, zorder=10, linewidth=1,
                       edgecolor='black', facecolor=(0, 0, 0, .0125),
                       path_effects=[withStroke(linewidth=5, foreground='w')])
       ax.add_artist(circle)


   def text(x, y, text):
       ax.text(x, y, text, backgroundcolor="white",
               ha='center', va='top', weight='bold', color='blue')


   # Minor tick
   circle(0.50, -0.10)
   text(0.50, -0.32, "Minor tick label")

   # Major tick
   circle(-0.03, 4.00)
   text(0.03, 3.80, "Major tick")

   # Minor tick
   circle(0.00, 3.50)
   text(0.00, 3.30, "Minor tick")

   # Major tick label
   circle(-0.15, 3.00)
   text(-0.15, 2.80, "Major tick label")

   # X Label
   circle(1.80, -0.27)
   text(1.80, -0.45, "X axis label")

   # Y Label
   circle(-0.27, 1.80)
   text(-0.27, 1.6, "Y axis label")
   # Title
   circle(1.60, 4.13)
   text(1.60, 3.93, "Title")

   # Blue plot
   circle(1.75, 2.80)
   text(1.75, 2.60, "Line\n(line plot)")

   # Red plot
   circle(1.20, 0.60)
   text(1.20, 0.40, "Line\n(line plot)")

   # Scatter plot
   circle(3.20, 1.75)
   text(3.20, 1.55, "Markers\n(scatter plot)")

   # Grid
   circle(3.00, 3.00)
   text(3.00, 2.80, "Grid")

   # Legend
   circle(3.70, 3.80)
   text(3.70, 3.60, "Legend")

   # Axes
   circle(0.5, 0.5)
   text(0.5, 0.3, "Axes")

   # Figure
   circle(-0.3, 0.65)
   text(-0.3, 0.45, "Figure")

   color = 'blue'
   ax.annotate('Spines', xy=(4.0, 0.35), xycoords='data',
               xytext=(3.3, 0.5), textcoords='data',
               weight='bold', color=color,
               arrowprops=dict(arrowstyle='->',
                               connectionstyle="arc3",
                               color=color))

   ax.annotate('', xy=(3.15, 0.0), xycoords='data',
               xytext=(3.45, 0.45), textcoords='data',
               weight='bold', color=color,
               arrowprops=dict(arrowstyle='->',
                               connectionstyle="arc3",
                               color=color))

   ax.text(4.0, -0.4, "Made with http://matplotlib.org",
           fontsize=10, ha="right", color='.5')



Here are some of the highlights:

* **Figure** is the main container in matplotlib. You can think of it as the page
* **Axes** is the coordinate system. It contains most of the figure elements, such as Axis, Line2D, Text.
  One can have multiple Axes objects in one Figure
* **Axis** is the container for the ticks and labels for the x and y axis of the plot
Showing/saving figures
DanielMurphy22's avatar
DanielMurphy22 committed
----------------------

There are two main ways that one can visualize images produced by matplotlib. The first one
is to pop up a window with the required graph. For that, we use the `show()` function of the figure.

.. code-block:: python

   import matplotlib.pyplot as plt
   fig,ax=plt.subplots()
   #some code to generate figure
   fig.show()

If one wants to save the output, the figure object has a function called `savefig`.
The main argument of savefig is the filename. Matplotlib will figure out the format of the figure
from the file extension. The 'png', 'ps', 'eps', and 'pdf' extensions will work with
almost any backend. For more information, see the documentation of
`Figure.savefig <https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.savefig>`_
Just replace the code above with:

.. code-block:: python

   import matplotlib.pyplot as plt
   fig,ax=plt.subplots()
   #some code to generate figure
   fig.savefig('plot1.png')
   fig.savefig('plot1.eps')


Sometimes one wants to save a multi-page pdf document. Here is how to do this:

.. code-block:: python

   import matplotlib.pyplot as plt
   from matplotlib.backends.backend_pdf import PdfPages

   with PdfPages('/home/andrei/Desktop/multipage_pdf.pdf') as pdf:
       #page1
       fig,ax=plt.subplots()
       ax.set_title('Page1')
       pdf.savefig(fig)
       #page2
       fig,ax=plt.subplots()
       ax.set_title('Page2')
       pdf.savefig(fig)


DanielMurphy22's avatar
DanielMurphy22 committed
------------
For matrix workspaces, if we use the `mantid` projection, one can plot the data in a similar
fashion as the plotting of arrays in matplotlib. Moreover, one can combine the two in the same figure


   from __future__ import division
   import numpy as np
   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import CreateWorkspace
   # Create a workspace that has a Gaussian peak
   x = np.arange(20)
   y0 = 10.+50*np.exp(-(x-10)**2/20)
   err=np.sqrt(y0)
   y = 10.+50*np.exp(-(x-10)**2/20)
   y += err*np.random.normal(size=len(err))
   err = np.sqrt(y)
   w = CreateWorkspace(DataX=x, DataY=y, DataE=err, NSpec=1, UnitX='DeltaE')
   # Plot - note that the projection='mantid' keyword is passed to all axes
   fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
   ax.errorbar(w,'rs') # plot the workspace with errorbars, using red squares
   ax.plot(x,y0,'k-', label='Initial guess') # plot the initial guess with black line
   ax.legend() # show the legend

Some data should be visualized as two dimensional colormaps

.. plot::
   :include-source:

   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import Load, ConvertToMD, BinMD, ConvertUnits, Rebin
   from matplotlib.colors import LogNorm

   # generate a nice 2D multi-dimensional workspace
   data = Load('CNCS_7860')
   data = ConvertUnits(InputWorkspace=data,Target='DeltaE', EMode='Direct', EFixed=3)
   data = Rebin(InputWorkspace=data, Params='-3,0.025,3', PreserveEvents=False)
   md = ConvertToMD(InputWorkspace=data,
                    QDimensions='|Q|',
                    dEAnalysisMode='Direct')
   sqw = BinMD(InputWorkspace=md,
               AlignedDim0='|Q|,0,3,100',
               AlignedDim1='DeltaE,-3,3,100')
   #2D plot
   fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
   c = ax.pcolormesh(sqw, norm=LogNorm())
   cbar=fig.colorbar(c)
   cbar.set_label('Intensity (arb. units)') #add text to colorbar

One can then change properties of the plot. Here is an example that
changes the label of the data, changes the label of the x and y axis,
changes the limits for the y axis, adds a title, change tick orientations,
and adds a grid


.. plot::
   :include-source:

   from __future__ import division
   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import CreateWorkspace
   # Create a workspace that has a Gaussian peak
   x = np.arange(20)
   y0 = 10.+50.*np.exp(-(x-10.)**2/20.)
   err=np.sqrt(y0)
   y = 10.+50*np.exp(-(x-10)**2/20.)
   y += err*np.random.normal(size=len(err))
   err = np.sqrt(y)
   w = CreateWorkspace(DataX=x, DataY=y, DataE=err, NSpec=1, UnitX='DeltaE')
   # Plot - note that the projection='mantid' keyword is passed to all axes
   fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
   ax.errorbar(w,'rs', label='Data')
   ax.plot(x,y0,'k-', label='Initial guess')
   ax.legend()
   ax.set_xlabel('Better energy estimate ($10^3\mu eV$)')
   ax.set_ylabel('Neutron counts')
   ax.set_ylim(-10,100)
   ax.set_title('Gaussian example')
   ax.tick_params(axis='x', direction='in')
   ax.tick_params(axis='y', direction='out')
   ax.grid(True)


Let's create now a figure with two panels. In the upper part we show the workspace as
above, but we add a fit, In the bottom part we add the difference.

.. plot::
   :include-source:

   from __future__ import division
   import numpy as np
   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import CreateWorkspace, Fit
   # Create a workspace that has a Gaussian peak
   x = np.arange(20)
   y0 = 10.+50*np.exp(-(x-10)**2/20)
   err=np.sqrt(y0)
   y = 10.+50*np.exp(-(x-10)**2/20)
   y += err*np.random.normal(size=len(err))
   err = np.sqrt(y)
   w = CreateWorkspace(DataX=x, DataY=y, DataE=err, NSpec=1, UnitX='DeltaE')
   result = Fit(Function='name=LinearBackground,A0=10,A1=0.;name=Gaussian,Height=60.,PeakCentre=10.,Sigma=3.',
                InputWorkspace='w',
                Output='w',
                OutputCompositeMembers=True)
   # The handle to the output workspace is result.OutputWorkspace. The first spectrum is the data,
   # the second is the fit, the third is the difference. Subsequent spectra are the calculated
   # functions of each of the components of the fit (here LinearBackground and Gaussian)
   # Note that the difference spectrum has 0 errors. One can copy the errors from data
   result.OutputWorkspace.setE(2,result.OutputWorkspace.readE(0))

   #do the plotting
   fig, [ax_top, ax_bottom] = plt.subplots(figsize=(9, 6),
                                           nrows=2,
                                           ncols=1,
                                           sharex=True,
                                           gridspec_kw={'height_ratios':[2,1]},
                                           subplot_kw={'projection':'mantid'})

   ax_top.errorbar(result.OutputWorkspace,'rs',wkspIndex=0, label='Data')
   ax_top.plot(result.OutputWorkspace,'b-',wkspIndex=1, label='Fit')
   ax_top.legend()
   ax_top.set_xlabel('')
   ax_top.set_ylabel('Neutron counts')
   ax_top.tick_params(axis='both', direction='in')
   ax_bottom.errorbar(result.OutputWorkspace,'ko',wkspIndex=2)
   ax_bottom.tick_params(axis='both', direction='in')
   ax_bottom.set_ylabel('Difference')
   fig.tight_layout()
One can do twin axes as well:

.. plot::
   :include-source:

   import numpy as np
   import matplotlib.pyplot as plt
   from mantid.simpleapi import CreateWorkspace
   from mantid import plots

   # Create some mock data
   t = np.arange(0.01, 10.0, 0.01)
   data1 = np.exp(t)
   data2 = np.sin(2 * np.pi * t)
   ws1=CreateWorkspace(t,data1,UnitX='MomentumTransfer')
   ws2=CreateWorkspace(t,data2,UnitX='MomentumTransfer')

   fig, ax1 = plt.subplots(subplot_kw={'projection':'mantid'})
   color = 'red'
   ax1.plot(ws1,'r-')
   ax1.set_ylabel('exp', color=color)
   ax1.tick_params(axis='y', labelcolor=color)

   ax2 = ax1.twinx()
   color = 'blue'
   ax2.plot(ws2, color=color)
   ax2.set_ylabel('sin', color=color)
   ax2.tick_params(axis='y', labelcolor=color)
   fig.tight_layout()
   #fig.show()
Custom Colors
DanielMurphy22's avatar
DanielMurphy22 committed
-------------
DanielMurphy22's avatar
DanielMurphy22 committed
Custom Color Cycle (Line / 1D plots)
####################################

The Default Color Cycle doesn't have to be used. Here is an example where a Custom Color Cycle is chosen. Make sure to fill the list `custom_colors` with either the HTML codes or recognised names for the desired colours. 
Both can be found `online <https://www.rapidtables.com/web/color/html-color-codes.html>`_.
.. plot::
   :include-source:

   from __future__ import (absolute_import, division, print_function, unicode_literals)
   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import *

   ws=Load('GEM40979.raw')
   Number = 12 # How many Spectra to Plot

   prop_cycle = plt.rcParams['axes.prop_cycle']
   colors = prop_cycle.by_key()['color'] # 10 colors in default cycle

   '''Change the following two parameters as you wish'''
   custom_colors = ['#0000ffff', 'salmon','#00ff00ff'] # I've chosen Blue, Salmon, Green
   fig = plt.figure(figsize = (10,10))
   ax1 = plt.subplot(211,projection='mantid')
   for i in range(Number):
      ax1.plot(ws, specNum = i+1, color=colors[i%len(colors)])
   ax1.set_title('Default')
   ax1.legend()

   ax2 = plt.subplot(212,projection='mantid')
   for i in range(Number):
      ax2.plot(ws, specNum= i+1, color=custom_colors[i%len(custom_colors)])
   ax2.set_title('Custom')
   ax2.legend()

   fig.suptitle('Line Plots: Color Cycle', fontsize='x-large')
   #fig.show()

Custom Colormap (MantidPlot)
############################

In MantidPlot, a Custom Colormap (256 entries of Red, Green and Blue values [0-255 for each]) can be created and saved with:

.. code-block:: python

   from __future__ import (absolute_import, division, print_function, unicode_literals)
   from mantid.simpleapi import *
   import matplotlib.pyplot as plt
   import numpy as np

   r = np.zeros(256)
   g = np.zeros(256)
   b = np.zeros(256)
   for i in range(256):
      '''Control how the RGB values change throughout the Colormap'''
DanielMurphy22's avatar
DanielMurphy22 committed
      r[i] = i          #linear increase in Red
      g[i] = 255 - i    #linear decrease in Green

DanielMurphy22's avatar
DanielMurphy22 committed
   f = open("C:\MantidInstall\colormaps\GreenRed.map","w+") #Change the .map filename as you wish!
   for i in range(256):
      f.write(str(int(r[i])))
      f.write(' ')
      f.write(str(int(g[i])))
      f.write(' ')
      f.write(str(int(b[i])))
      f.write('\n')
   f.close()

DanielMurphy22's avatar
DanielMurphy22 committed
Then open up any dataset (such as EMU00020884.nxs from the `TrainingCourseData <https://sourceforge.net/projects/mantid/files/Sample%20Data/TrainingCourseData.zip/download>`_) and produce a Colorfill plot. Change the Colormap by following `these instructions <https://docs.mantidproject.org/nightly/tutorials/mantid_basic_course/loading_and_displaying_data/04_displaying_2D_data.html#changing-the-colour-map>`_ and selecting the newly created `Greenred.map`.
DanielMurphy22's avatar
DanielMurphy22 committed
.. figure:: ../images/ColorMapCustomPlot.PNG
   :class: screenshot
   :width: 500px
DanielMurphy22's avatar
DanielMurphy22 committed
   :align: center
This New Colormap is saved within the MantidInstall folder so it can be used without re-running this script!

   
Custom Colormap (MantidWorkbench)
#################################

DanielMurphy22's avatar
DanielMurphy22 committed
You can view the premade Colormaps `here <https://matplotlib.org/2.2.3/gallery/color/colormap_reference.html?highlight=colormap>`_.
These Colormaps can be registered and remain for the current session, but need to be rerun if Mantid has been reopened. Choose the location to Save your Colormap file wisely, outside of your MantidInstall folder!

The following methods show how to Load, Convert from MantidPlot format, Create from Scratch and Visualise a Custom Colormap.

- If you already have a Colormap file in an (N by 4) format, with all values between 0 and 1, then use:

*1a. Load Colormap and Register*
.. code-block:: python
  import matplotlib.pyplot as plt
  import numpy as np
  from matplotlib.colors import ListedColormap, LinearSegmentedColormap
  Cmap_Name = 'Beach' # Colormap name
  Loaded_Cmap = np.loadtxt("C:\Path\to\File\Filename.txt")
  # Register the Loaded Colormap
  Listed_CustomCmap = ListedColormap(Loaded_Cmap, name=Cmap_Name)
  plt.register_cmap(name=Cmap_Name, cmap= Listed_CustomCmap)
  # Create and register the reverse colormap
  Res = len(Loaded_Cmap)
  Reverse = np.zeros((Res,4))
  for i in range(Res):
    for j in range(4):
        Reverse[i][j] = Loaded_Cmap[Res-(i+1)][j]
  Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
  plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)
DanielMurphy22's avatar
DanielMurphy22 committed
- If you have a Colormap file in a MantidPlot format (N by 3) with all values between 0 and 255, firstly **rename the file extension from .map to .txt**, then use:

*1b. Convert MantidPlot Colormap and Register*
.. code-block:: python

  import matplotlib.pyplot as plt
  import numpy as np
  from matplotlib.colors import ListedColormap, LinearSegmentedColormap

  Cmap_Name = 'Beach'
  Loaded_Cmap = np.loadtxt("/Path/to/file/Beach.txt")

  Res = len(Loaded_Cmap)
  Cmap = np.zeros((Res,4))
  for i in range(Res): 
    '''Normalise RGB values, Add 4th column alpha set to 1'''
    for j in range(3):
      Cmap[i][j] = float(Loaded_Cmap[i][j]) / 255
    Cmap[i][3] = 1
    '''Checks all values b/w 0 and 1'''
    for j in range(4):
        if Cmap[i][j] > 1:
            print Cmap[i]
            raise ValueError('Values must be between 0 and 1, one of the above is > 1')
        if Cmap[i][j] < 0:
            print Cmap[i]
            raise ValueError('Values must be between 0 and 1, one of the above is negative')
        else:
            pass

  #np.savetxt("C:\Path\to\File\Filename.txt",Cmap) #uncomment to save to file

  # Register the Loaded Colormap
  Listed_CustomCmap = ListedColormap(Cmap, name=Cmap_Name)
  plt.register_cmap(name=Cmap_Name, cmap= Listed_CustomCmap)

  # Create and register the reverse colormap
  Reverse = np.zeros((Res,4))
  for i in range(Res):
    for j in range(4):
        Reverse[i][j] = Cmap[Res-(i+1)][j]

  Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
  plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)

DanielMurphy22's avatar
DanielMurphy22 committed
- To Create a Colormap from scratch, use:

*1c. Create and Register*
.. code-block:: python

  import matplotlib.pyplot as plt
  from matplotlib.colors import ListedColormap, LinearSegmentedColormap
  import numpy as np

  Cmap_Name = 'Beach' # Colormap name
  Res = 500 # Resolution of your Colormap (number of steps in colormap)

  Re = Res-1
  Cmap = np.zeros((Res,4))
  for i in range(Res): 
    '''Input functions inside float(), Divide by Res to normalise'''
    Cmap[i][0] = float(Res)   / Res       #Red   #just 1
    Cmap[i][1] = float(i)     / Re        #Green #+ve i divisible by Res-1 = Re
    Cmap[i][2] = float(Res-i)**2 / Res**2 #Blue  #Make sure Norm_factor correct
    Cmap[i][3] = 1
    '''Checks all values b/w 0 and 1'''
    for j in range(4):
        if Cmap[i][j] > 1:
            print Cmap[i]
            raise ValueError('Values must be between 0 and 1, one of the above is > 1')
        if Cmap[i][j] < 0:
            print Cmap[i]
            raise ValueError('Values must be between 0 and 1, one of the above is Negative')
        else:
            pass

  #np.savetxt("C:\Path\to\File\Filename.txt",Cmap) #uncomment to save to file

  Listed_CustomCmap = ListedColormap(Cmap, name = Cmap_Name)
  plt.register_cmap(name = Cmap_Name, cmap = Listed_CustomCmap)

  # Create and register the reverse colormap
  Reverse = np.zeros((Res,4))
  for i in range(Res):
    for j in range(4):
        Reverse[i][j] = Cmap[Res-(i+1)][j]

  Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
  plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)

DanielMurphy22's avatar
DanielMurphy22 committed
Now the Custom Colormap has been registered, right-click on a workspace and produce a colorfill plot. In Figure Options (Gear Icon in Plot Figure), under the Images Tab, you can use the drop down-menu to select the new Colormap, and use the check-box to select its Reverse! 

- Otherwise, use a script like this (from above in Section "Simple Plots") to plot with your new Colormap:

*2. Plot New Colormap* (change the "cmap" name in line 12 accordingly)
DanielMurphy22's avatar
DanielMurphy22 committed
.. code-block:: python

   from mantid.simpleapi import Load, ConvertToMD, BinMD, ConvertUnits, Rebin
DanielMurphy22's avatar
DanielMurphy22 committed
   from mantid import plots
   import matplotlib.pyplot as plt
DanielMurphy22's avatar
DanielMurphy22 committed
   from matplotlib.colors import LogNorm
   data = Load('CNCS_7860')
   data = ConvertUnits(InputWorkspace=data,Target='DeltaE', EMode='Direct', EFixed=3)
   data = Rebin(InputWorkspace=data, Params='-3,0.025,3', PreserveEvents=False)
   md = ConvertToMD(InputWorkspace=data,QDimensions='|Q|',dEAnalysisMode='Direct')
   sqw = BinMD(InputWorkspace=md,AlignedDim0='|Q|,0,3,100',AlignedDim1='DeltaE,-3,3,100') 
DanielMurphy22's avatar
DanielMurphy22 committed

   fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
   c = ax.pcolormesh(sqw, cmap='Beach', norm=LogNorm())
DanielMurphy22's avatar
DanielMurphy22 committed
   cbar=fig.colorbar(c)
   cbar.set_label('Intensity (arb. units)') #add text to colorbar
   #fig.show()
DanielMurphy22's avatar
DanielMurphy22 committed

DanielMurphy22's avatar
DanielMurphy22 committed
.. plot::

  import matplotlib.pyplot as plt
  from matplotlib.colors import ListedColormap, LinearSegmentedColormap
  import numpy as np

  Cmap_Name = 'Beach' # Colormap name
  Res = 500 # Resolution of your Colormap (number of steps in colormap)

  Re = Res-1
  Cmap = np.zeros((Res,4))
  for i in range(Res): 
    '''Input functions inside float(), Divide by Res to normalise'''
    Cmap[i][0] = float(Res)   / Res       #Red   #just 1
    Cmap[i][1] = float(i)     / Re        #Green #+ve i divisible by Res-1 = Re
    Cmap[i][2] = float(Res-i)**2 / Res**2 #Blue  #Make sure Norm_factor correct
    Cmap[i][3] = 1
    '''Checks all values b/w 0 and 1'''
    for j in range(4):
        if Cmap[i][j] > 1:
            print Cmap[i]
            raise ValueError('Values must be between 0 and 1, one of the above is > 1')
        if Cmap[i][j] < 0:
            print Cmap[i]
            raise ValueError('Values must be between 0 and 1, one of the above is Negative')
        else:
            pass

  #np.savetxt("C:\Path\to\File\Filename.txt",Cmap) #uncomment to save to file

  Listed_CustomCmap = ListedColormap(Cmap, name = Cmap_Name)
  plt.register_cmap(name = Cmap_Name, cmap = Listed_CustomCmap)

  # Create and register the reverse colormap
  Reverse = np.zeros((Res,4))
  for i in range(Res):
    for j in range(4):
        Reverse[i][j] = Cmap[Res-(i+1)][j]

  Listed_CustomCmap_r = ListedColormap(Reverse, name=(Cmap_Name + '_r') )
  plt.register_cmap(name=(Cmap_Name + '_r'), cmap= Listed_CustomCmap_r)
   
  from mantid.simpleapi import Load, ConvertToMD, BinMD, ConvertUnits, Rebin
  from mantid import plots
  from matplotlib.colors import LogNorm
  data = Load('CNCS_7860')
  data = ConvertUnits(InputWorkspace=data,Target='DeltaE', EMode='Direct', EFixed=3)
  data = Rebin(InputWorkspace=data, Params='-3,0.025,3', PreserveEvents=False)
  md = ConvertToMD(InputWorkspace=data,QDimensions='|Q|',dEAnalysisMode='Direct')
  sqw = BinMD(InputWorkspace=md,AlignedDim0='|Q|,0,3,100',AlignedDim1='DeltaE,-3,3,100') 

  fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
  c = ax.pcolormesh(sqw, cmap='Beach', norm=LogNorm())
  cbar=fig.colorbar(c)
  cbar.set_label('Intensity (arb. units)') #add text to colorbar
  #fig.show()

DanielMurphy22's avatar
DanielMurphy22 committed
Colormaps can also be created with the `colormap package <https://colormap.readthedocs.io/en/latest/>`_ or by `concatenating existing colormaps <https://matplotlib.org/3.1.0/tutorials/colors/colormap-manipulation.html>`_.
DanielMurphy22's avatar
DanielMurphy22 committed

Plotting Sample Logs
DanielMurphy22's avatar
DanielMurphy22 committed
--------------------

The :func:`mantid.plots.MantidAxes.plot<mantid.plots.MantidAxes.plot>` function can show sample logs. By default,
the time axis represents the time since the first proton charge pulse (the
beginning of the run), but one can also plot absolute time using `FullTime=True`

.. plot::
   :include-source:
   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import Load
   w=Load('CNCS_7860')
   fig = plt.figure()
   ax1 = fig.add_subplot(211,projection='mantid')
   ax2 = fig.add_subplot(212,projection='mantid')
   ax1.plot(w, LogName='ChopperStatus5')
   ax1.set_title('From run start')
   ax2.plot(w, LogName='ChopperStatus5',FullTime=True)
   ax2.set_title('Absolute time')
   fig.tight_layout()

Note that the parasite axes in matplotlib do not accept the projection keyword.
So one needs to use :func:`mantid.plots.plotfunctions.plot<mantid.plots.plotfunctions.plot>` instead.

.. plot::
   :include-source:
   import matplotlib.pyplot as plt
   from mantid import plots
   from mantid.simpleapi import Load
   w=Load('CNCS_7860')
   fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
   ax.plot(w,LogName='ChopperStatus5')
   axt=ax.twiny()
   plots.plotfunctions.plot(axt,w,LogName='ChopperStatus5', FullTime=True)
Complex plots
DanielMurphy22's avatar
DanielMurphy22 committed
-------------
One common type of a slightly more complex figure involves drawing an inset.
.. plot::
   :include-source:

   import matplotlib.pyplot as plt
   import numpy as np
   from mantid import plots
   from mantid.simpleapi import CreateWorkspace, FFT
   from matplotlib import rcParams
   import warnings

   x=np.linspace(0,10,250)
   y=np.cos(2*np.pi*1.1*x)*np.exp(-x/7.)
   err=np.sqrt(0.01+x/200.)
   w=CreateWorkspace(x,y,err,UnitX='tof')
   fft=FFT(w)

   # make all ticks point in
   rcParams['xtick.direction'] = 'in'
   rcParams['ytick.direction'] = 'in'

   fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
   ax.errorbar(w,'ks')
   ax.set_ylabel('Asymmetry')
   ax.set_ylim(-1.5,2)
   ax_inset=fig.add_axes([0.7,0.72,0.2,0.2],projection='mantid')
   ax_inset.plot(fft,specNum=6)
   ax_inset.set_xlim(0,2)
   ax_inset.set_xlabel('Frequency (MHz)')
   ax_inset.set_ylabel('|FFT|')
   # note that thight_layout will produce a warning here "This figure includes
   # Axes that are not compatible with tight_layout, so its results might be incorrect."
   with warnings.catch_warnings():
       warnings.simplefilter("ignore", category=UserWarning)
       fig.tight_layout()
   #fig.show()


Plotting dispersion curves  on multiple panels can also be done using matplotlib:

.. plot::
   :include-source:

   import matplotlib.pyplot as plt
   import numpy as np
   from matplotlib.gridspec import GridSpec
   from mantid.simpleapi import CreateMDHistoWorkspace
   from mantid import plots
   # Generate nice (fake) dispersion data
   # Gamma to K
   q = np.arange(0,0.333,0.01)
   e = np.arange(0,60)
   x,y = np.meshgrid(q,e)
   omega_hh = 20. * np.sin(np.pi*x*1.5)
   I_hh = np.exp(-x*5.)
   signal = I_hh * np.exp(-(y-omega_hh)**2)
   signal[y>25+100*x**2]=np.nan
   ws1=CreateMDHistoWorkspace(Dimensionality=2,
                              Extents='0,0.3333,0,60',
                              SignalInput=signal,
                              ErrorInput=np.sqrt(signal),
                              NumberOfBins='{0},{1}'.format(len(q),len(e)),
                              Names='Dim1,Dim2',
                              Units='MomentumTransfer,EnergyTransfer')
   # K to M
   q = np.arange (0.333,0.5, 0.01)
   x,y = np.meshgrid(q,e)
   omega_hm2h=20. * np.cos(np.pi*(x-0.333))
   signal = np.exp(-(y-omega_hm2h)**2)
   signal[y>35]=np.nan
   ws2=CreateMDHistoWorkspace(Dimensionality=2,
                              Extents='0.3333,0.5,0,60',
                              SignalInput=signal,
                              ErrorInput=np.sqrt(signal),
                              NumberOfBins='{0},{1}'.format(len(q),len(e)),
                              Names='Dim1,Dim2',
                              Units='MomentumTransfer,EnergyTransfer')
   d=6.7
   a=2.454
   #Gamma is (0,0,0)
   #A is (0,0,1/2)
   #K is (1/3,1/3,0)
   #M is (1/2,0,0)
   gamma_a=np.pi/d
   gamma_m=2.*np.pi/np.sqrt(3.)/a
   m_k=2.*np.pi/3/a
   gamma_k=4.*np.pi/3/a
   fig=plt.figure(figsize=(12,5))
   gs = GridSpec(1, 4,
                 width_ratios=[gamma_k,m_k,gamma_m,gamma_a],
                 wspace=0)
   ax1 = plt.subplot(gs[0],projection='mantid')
   ax2 = plt.subplot(gs[1],sharey=ax1,projection='mantid')
   ax3 = plt.subplot(gs[2],sharey=ax1)
   ax4 = plt.subplot(gs[3],sharey=ax1)
   ax1.pcolormesh(ws1)
   ax2.pcolormesh(ws2)
   ax3.plot([0,0.5],[0,17.])
   ax4.plot([0,0.5],[0,10])
   #Adjust plotting parameters
   ax1.set_ylabel('E (meV)')
   ax1.set_xlabel('')
   ax1.set_xlim(0,1./3)
   ax1.set_ylim(0.,40.)
   ax1.set_title(r'$[\epsilon,\epsilon,0], 0 \leq \epsilon \leq 1/3$')
   ax1.set_xticks([0,1./3])
   ax1.set_xticklabels(['$\Gamma$','$K$'])
   #ax1.spines['right'].set_visible(False)
   ax1.tick_params(direction='in')
   ax2.get_yaxis().set_visible(False)
   ax2.set_xlim(1./3,1./2)
   ax2.set_xlabel('')
   ax2.set_title(r'$[1/3+\epsilon,1/3-2\epsilon,0], 0 \leq \epsilon \leq 1/6$')
   ax2.set_xticks([1./2])
   ax2.set_xticklabels(['$M$'])
   #ax2.spines['left'].set_visible(False)
   ax2.tick_params(direction='in')
   #invert axis
   ax3.set_xlim(1./2,0)
   ax3.get_yaxis().set_visible(False)
   ax3.set_title(r'$[\epsilon,0,0], 1/2 \geq \epsilon \geq 0$')
   ax3.set_xticks([0])
   ax3.set_xticklabels(['$\Gamma$'])
   ax3.tick_params(direction='in')
   ax4.set_xlim(0,1./2)
   ax4.get_yaxis().set_visible(False)
   ax4.set_title(r'$[0,0,\epsilon], 0 \leq \epsilon \leq 1/2$')
   ax4.set_xticks([1./2])
   ax4.set_xticklabels(['$A$'])
   ax4.tick_params(direction='in')
Change Matplotlib Defaults
DanielMurphy22's avatar
DanielMurphy22 committed
--------------------------

It is possible to alter the default appearance of Matplotlib plots, e.g. linewidths, label sizes,
colour cycles etc. This is most readily achieved by setting the ``rcParams`` at the start of a
Mantid Workbench session. The example below shows a plot with the default line width, followed be resetting the parameters with ``rcParams``. An example with many of the
editable parameters is available at `the Matplotlib site <https://matplotlib.org/users/customizing.html>`_.

.. plot::
   :include-source:

    import numpy as np
    import matplotlib.pyplot as plt

    # Set up the data
    x = np.linspace(0, 2 * np.pi)
    offsets = np.linspace(0, 2*np.pi, 4, endpoint=False)
    # Create array with shifted-sine curve along each column
    yy = np.transpose([np.sin(x + phi) for phi in offsets])
    # Plot the data
    fig, ax = plt.subplots()
    ax.plot(yy)

    ## Reset the parameters

    import matplotlib as mpl
    mpl.rcParams['lines.linewidth'] = 2.0
    mpl.rcParams['axes.grid'] = True
    mpl.rcParams['axes.facecolor'] = (0.95, 0.95, 0.95)
    mpl.rcParams['grid.linestyle'] = '--'
    # Plot the data
    fig, ax = plt.subplots()
    ax.plot(yy)

For much more on customising the graph appearance see the `Matplotlib documentation
<https://matplotlib.org/users/dflt_style_changes.html>`_.

Nick Draper's avatar
Nick Draper committed
A list of some common properties you might want to change and the keywords to set:

+--------------------+-------------------------+------------+
Nick Draper's avatar
Nick Draper committed
| Parameter          | Keyword                 | Default    |
+--------------------+-------------------------+------------+
| Error bar cap      | ``errorbar.capsize``    | 0          |
+--------------------+-------------------------+------------+
| Line width         | ``lines.linewidth``     | 1.25       |
+--------------------+-------------------------+------------+
| Grid on/off        | ``axes.grid``           | False      |
+--------------------+-------------------------+------------+
| Ticklabel size     | ``xtick.labelsize``     | medium     |
|                    | ``ytick.labelsize``     |            |
+--------------------+-------------------------+------------+
| Minor ticks on/off | ``xtick.minor.visible`` | False      |
|                    | ``ytick.minor.visible`` |            |
+--------------------+-------------------------+------------+
| Face colour        | ``axes.facecolor``      | white      |
+--------------------+-------------------------+------------+
| Font type          | ``font.family``         | sans-serif |
+--------------------+-------------------------+------------+

A much fuller list of properties is avialble `in the Matplotlib documentation
<https://matplotlib.org/users/customizing.html>`_.