Newer
Older
#pylint: disable=no-init,invalid-name
from mantid.api import *
from mantid.kernel import *
from mantid.simpleapi import *
import os
from time import strftime
from mantid.kernel import Direction
#pylint: disable=too-many-instance-attributes
class CalibrateRectangularDetectors(PythonAlgorithm):
_instrument = None
_filterBadPulses = None
_xpixelbin = None
_ypixelbin = None
_grouping = None
_smoothoffsets = None
_smoothGroups = None
_peakpos = None
_peakpos1 = None
_peakmin = None
_peakmax = None
_peakpos2 = None
_peakmin2 = None
_peakmax2 = None
_peakpos3 = None
_peakmin3 = None
_peakmax3 = None
_lastpixel = None
_lastpixel2 = None
_lastpixel3 = None
_ccnumber = None
_maxoffset = None
_diffractionfocus = None
_outDir = None
_outTypes = None
_binning = None
def category(self):
return "Diffraction;PythonAlgorithms"
def name(self):
return "CalibrateRectangularDetectors"
def summary(self):
return "Calibrate the detector pixels and write a calibration file"
def PyInit(self):
sns = ConfigService.Instance().getFacility("SNS")
instruments = []
for instr in sns.instruments():
for tech in instr.techniques():
if "Neutron Diffraction" == str(tech):
instruments.append(instr.shortName())
break
self.declareProperty("Instrument", "PG3",
StringListValidator(instruments))
validator = IntArrayBoundedValidator()
validator.setLower(0)
self.declareProperty(IntArrayProperty("RunNumber", values=[0], direction=Direction.Input,
validator=validator))
validator = IntArrayBoundedValidator()
validator.setLower(0)
self.declareProperty(IntArrayProperty("Background", values=[0], direction=Direction.Input,
extensions = [ "_event.nxs", "_runinfo.xml", ".nxs.h5"]
self.declareProperty("Extension", "_event.nxs",
StringListValidator(extensions))
self.declareProperty("CompressOnRead", False,
"Compress the event list when reading in the data")
self.declareProperty("XPixelSum", 1,
"Sum detector pixels in X direction. Must be a factor of X total pixels. Default is 1.")
self.declareProperty("YPixelSum", 1,
"Sum detector pixels in Y direction. Must be a factor of Y total pixels. Default is 1.")
self.declareProperty("SmoothSummedOffsets", False,
"If the data was summed for calibration, smooth the resulting offsets workspace.")
self.declareProperty("SmoothGroups", "",
"Comma delimited number of points for smoothing pixels in each group. Default is no Smoothing.")
self.declareProperty("UnwrapRef", 0.,
"Reference total flight path for frame unwrapping. Zero skips the correction")
self.declareProperty("LowResRef", 0.,
"Reference DIFC for resolution removal. Zero skips the correction")
self.declareProperty("MaxOffset", 1.0,
"Maximum absolute value of offsets; default is 1")
self.declareProperty("CrossCorrelation", True,
"CrossCorrelation if True; minimize using many peaks if False.")
validator = FloatArrayBoundedValidator()
validator.setLower(0.)
self.declareProperty(FloatArrayProperty("PeakPositions", []),
"Comma delimited d-space positions of reference peaks. Use 1-3 for Cross Correlation. "+\
"Unlimited for many peaks option.")
self.declareProperty("PeakWindowMax", 0.,
"Maximum window around a peak to search for it. Optional.")
self.declareProperty(ITableWorkspaceProperty("FitwindowTableWorkspace", "", Direction.Input, PropertyMode.Optional),\
"Name of input table workspace containing the fit window information for each spectrum. ")
self.declareProperty("MinimumPeakHeight", 2., "Minimum value allowed for peak height")
self.declareProperty("MinimumPeakHeightObs", 0.,\
"Minimum value of a peak's maximum observed Y value for this peak to be used to calculate offset.")
self.declareProperty(MatrixWorkspaceProperty("DetectorResolutionWorkspace", "", Direction.Input, PropertyMode.Optional),\
"Name of optional input matrix workspace for each detector's resolution (D(d)/d).")
self.declareProperty(FloatArrayProperty("AllowedResRange", [0.25, 4.0], direction=Direction.Input),\
"Range of allowed individual peak's resolution factor to input detector's resolution.")
self.declareProperty("PeakFunction", "Gaussian", StringListValidator(["BackToBackExponential", "Gaussian", "Lorentzian"]),
"Type of peak to fit. Used only with CrossCorrelation=False")
self.declareProperty("BackgroundType", "Flat", StringListValidator(['Flat', 'Linear', 'Quadratic']),
"Used only with CrossCorrelation=False")
self.declareProperty(IntArrayProperty("DetectorsPeaks", []),
"Comma delimited numbers of detector banks for each peak if using 2-3 peaks for Cross Correlation. "+\
"Default is all.")
self.declareProperty("PeakHalfWidth", 0.05,
"Half width of d-space around peaks for Cross Correlation. Default is 0.05")
self.declareProperty("CrossCorrelationPoints", 100,
"Number of points to find peak from Cross Correlation. Default is 100")
self.declareProperty(FloatArrayProperty("Binning", [0.,0.,0.]),
"Min, Step, and Max of d-space bins. Logarithmic binning is used if Step is negative.")
self.declareProperty("DiffractionFocusWorkspace", False, "Diffraction focus by detectors. Default is False")
grouping = ["All", "Group", "Column", "bank"]
self.declareProperty("GroupDetectorsBy", "All", StringListValidator(grouping),
"Detector groups to use for future focussing: All detectors as one group, "+\
"Groups (East,West for SNAP), Columns for SNAP, detector banks")
self.declareProperty("FilterBadPulses", True, "Filter out events measured while proton charge is more than 5% below average")
self.declareProperty("FilterByTimeMin", 0.,
"Relative time to start filtering by in seconds. Applies only to sample.")
self.declareProperty("FilterByTimeMax", 0.,
"Relative time to stop filtering by in seconds. Applies only to sample.")
outfiletypes = ['dspacemap', 'calibration', 'dspacemap and calibration']
self.declareProperty("SaveAs", "calibration", StringListValidator(outfiletypes))
self.declareProperty(FileProperty("OutputDirectory", "", FileAction.Directory))
self.declareProperty("OutputFilename", "", Direction.Output)
def validateInputs(self):
messages = {}
detectors = self.getProperty("DetectorsPeaks").value
if self.getProperty("CrossCorrelation").value:
positions = self.getProperty("PeakPositions").value
if len(positions) != 1:
messages["PeakPositions"] = "Can only have one cross correlation peak without specifying 'DetectorsPeaks'"
else:
if len(detectors) != len(positions):
messages["PeakPositions"] = "Must be the same length as 'DetectorsPeaks' (%d != %d)" \
% (len(positions), len(detectors))
messages["DetectorsPeaks"] = "Must be the same length as 'PeakPositions' or empty"
elif len(detectors) > 3:
messages["DetectorsPeaks"] = "Up to 3 peaks are supported"
elif bool(detectors):
messages["DetectorsPeaks"] = "Only allowed for CrossCorrelation=True"
return messages
def _loadPreNeXusData(self, runnumber, extension, **kwargs):
"""
Load PreNexus data
@param runnumer: run number (integer)
@param extension: file extension
Logger("CalibrateRectangularDetector").warning("Loading PreNexus for run %s" % runnumber)
mykwargs = {}
if kwargs.has_key("FilterByTimeStart"):
mykwargs["ChunkNumber"] = int(kwargs["FilterByTimeStart"])
if kwargs.has_key("FilterByTimeStop"):
mykwargs["TotalChunks"] = int(kwargs["FilterByTimeStop"])
# generate the workspace name
name = "%s_%d" % (self._instrument, runnumber)
filename = name + extension
wksp = LoadPreNexus(Filename=filename, OutputWorkspace=name, **mykwargs)
# add the logs to it
if str(self._instrument) == "SNAP":
LoadInstrument(Workspace=wksp, InstrumentName=self._instrument, RewriteSpectraMap=False)
return wksp
def _loadEventNeXusData(self, runnumber, extension, **kwargs):
"""
Load event Nexus data
@param runnumer: run number (integer)
@param extension: file extension
kwargs["Precount"] = False
if self.getProperty("CompressOnRead").value:
kwargs["CompressTolerance"] = .1
name = "%s_%d" % (self._instrument, runnumber)
filename = name + extension
wksp = LoadEventNexus(Filename=filename, OutputWorkspace=name, **kwargs)
# For NOMAD data before Aug 2012, use the updated geometry
if str(wksp.getInstrument().getValidFromDate()) == "1900-01-31T23:59:59" and str(self._instrument) == "NOMAD":
path=config["instrumentDefinition.directory"]
LoadInstrument(Workspace=wksp, Filename=path+'/'+"NOMAD_Definition_20120701-20120731.xml",
RewriteSpectraMap=False)
return wksp
def _loadData(self, runnumber, extension, filterWall=None):
"""
Load data
@param runnumber: run number (integer)
@param extension: file extension
"""
if filterWall is not None:
if filterWall[0] > 0.:
filterDict["FilterByTimeStart"] = filterWall[0]
filterDict["FilterByTimeStop"] = filterWall[1]
if runnumber is None or runnumber <= 0:
return None
if extension.endswith("_event.nxs") or extension.endswith(".nxs.h5"):
wksp = self._loadEventNeXusData(runnumber, extension, **filterDict)
wksp = self._loadPreNeXusData(runnumber, extension, **filterDict)
if self._filterBadPulses and not self.getProperty("CompressOnRead").value:
wksp = FilterBadPulses(InputWorkspace=wksp, OutputWorkspace=wksp.name())
if not self.getProperty("CompressOnRead").value:
wksp = CompressEvents(wksp, OutputWorkspace=wksp.name(),
Tolerance=COMPRESS_TOL_TOF) # 100ns
return wksp
def _cccalibrate(self, wksp, calib):
if wksp is None:
return None
LRef = self.getProperty("UnwrapRef").value
DIFCref = self.getProperty("LowResRef").value
if (LRef > 0.) or (DIFCref > 0.): # super special Jason stuff
if LRef > 0:
wksp = UnwrapSNS(InputWorkspace=wksp, OutputWorkspace=wksp.name(), LRef=LRef)
if DIFCref > 0:
wksp = RemoveLowResTOF(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
ReferenceDIFC=DIFCref)
if not self.getProperty("CompressOnRead").value:
wksp = CompressEvents(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Tolerance=COMPRESS_TOL_TOF) # 100ns
wksp = ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp.name(), Target="dSpacing")
SortEvents(InputWorkspace=wksp, SortBy="X Value")
# Sum pixelbin X pixelbin blocks of pixels
if self._xpixelbin*self._ypixelbin>1:
wksp = SumNeighbours(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
SumX=self._xpixelbin, SumY=self._ypixelbin)
# Bin events in d-Spacing
wksp = Rebin(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Params=str(self._peakmin)+","+str(abs(self._binning[1]))+","+str(self._peakmax))
#Find good peak for reference
ymax = 0
for s in range(0,wksp.getNumberHistograms()):
y_s = wksp.readY(s)
midBin = wksp.blocksize()/2
if y_s[midBin] > ymax:
refpixel = s
ymax = y_s[midBin]
self.log().information("Reference spectra=%s" % refpixel)
# Remove old calibration files
cmd = "rm "+calib
os.system(cmd)
# Cross correlate spectra using interval around peak at peakpos (d-Spacing)
if self._lastpixel == 0:
self._lastpixel = wksp.getNumberHistograms()-1
else:
self._lastpixel = wksp.getNumberHistograms()*self._lastpixel/self._lastpixel3-1
CrossCorrelate(InputWorkspace=wksp, OutputWorkspace=str(wksp)+"cc",
ReferenceSpectra=refpixel, WorkspaceIndexMin=0,
WorkspaceIndexMax=self._lastpixel,
XMin=self._peakmin, XMax=self._peakmax)
# Get offsets for pixels using interval around cross correlations center and peak at peakpos (d-Spacing)
GetDetectorOffsets(InputWorkspace=str(wksp)+"cc", OutputWorkspace=str(wksp)+"offset",
Step=abs(self._binning[1]), DReference=self._peakpos1,
XMin=-self._ccnumber, XMax=self._ccnumber,
MaxOffset=self._maxoffset, MaskWorkspace=str(wksp)+"mask")
if AnalysisDataService.doesExist(str(wksp)+"cc"):
AnalysisDataService.remove(str(wksp)+"cc")
if self._peakpos2 > 0.0:
wksp = Rebin(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Params=str(self._peakmin2)+","+str(abs(self._binning[1]))+","+str(self._peakmax2))
#Find good peak for reference
ymax = 0
for s in range(0,wksp.getNumberHistograms()):
y_s = wksp.readY(s)
midBin = wksp.blocksize()/2
if y_s[midBin] > ymax:
refpixel = s
ymax = y_s[midBin]
msg = "Reference spectra = %s, lastpixel_3 = %s" % (refpixel, self._lastpixel3)
self._lastpixel2 = wksp.getNumberHistograms()*self._lastpixel2/self._lastpixel3-1
CrossCorrelate(InputWorkspace=wksp, OutputWorkspace=str(wksp)+"cc2",
ReferenceSpectra=refpixel, WorkspaceIndexMin=self._lastpixel+1,
WorkspaceIndexMax=self._lastpixel2,
XMin=self._peakmin2, XMax=self._peakmax2)
# Get offsets for pixels using interval around cross correlations center and peak at peakpos (d-Spacing)
GetDetectorOffsets(InputWorkspace=str(wksp)+"cc2", OutputWorkspace=str(wksp)+"offset2",
Step=abs(self._binning[1]), DReference=self._peakpos2,
XMin=-self._ccnumber, XMax=self._ccnumber,
MaxOffset=self._maxoffset, MaskWorkspace=str(wksp)+"mask2")
Plus(LHSWorkspace=str(wksp)+"offset", RHSWorkspace=str(wksp)+"offset2",
OutputWorkspace=str(wksp)+"offset")
Plus(LHSWorkspace=str(wksp)+"mask", RHSWorkspace=str(wksp)+"mask2",
OutputWorkspace=str(wksp)+"mask")
for ws in [str(wksp)+"cc2", str(wksp)+"offset2", str(wksp)+"mask2"]:
if AnalysisDataService.doesExist(ws):
AnalysisDataService.remove(ws)
if self._peakpos3 > 0.0:
wksp = Rebin(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Params=str(self._peakmin3)+","+str(abs(self._binning[1]))+","+str(self._peakmax3))
#Find good peak for reference
ymax = 0
for s in range(0,wksp.getNumberHistograms()):
y_s = wksp.readY(s)
midBin = wksp.blocksize()/2
if y_s[midBin] > ymax:
refpixel = s
ymax = y_s[midBin]
self.log().information("Reference spectra=%s" % refpixel)
CrossCorrelate(InputWorkspace=wksp, OutputWorkspace=str(wksp)+"cc3",
ReferenceSpectra=refpixel,
WorkspaceIndexMin=self._lastpixel2+1,
WorkspaceIndexMax=wksp.getNumberHistograms()-1,
XMin=self._peakmin3, XMax=self._peakmax3)
# Get offsets for pixels using interval around cross correlations center and peak at peakpos (d-Spacing)
GetDetectorOffsets(InputWorkspace=str(wksp)+"cc3", OutputWorkspace=str(wksp)+"offset3",
Step=abs(self._binning[1]), DReference=self._peakpos3,
XMin=-self._ccnumber, XMax=self._ccnumber,
MaxOffset=self._maxoffset, MaskWorkspace=str(wksp)+"mask3")
Plus(LHSWorkspace=str(wksp)+"offset", RHSWorkspace=str(wksp)+"offset3",
OutputWorkspace=str(wksp)+"offset")
Plus(LHSWorkspace=str(wksp)+"mask", RHSWorkspace=str(wksp)+"mask3",
OutputWorkspace=str(wksp)+"mask")
for ws in [str(wksp)+"cc3", str(wksp)+"offset3", str(wksp)+"mask3"]:
if AnalysisDataService.doesExist(ws):
AnalysisDataService.remove(ws)
(dummy, numGroupedSpectra, numGroups) = CreateGroupingWorkspace(InputWorkspace=wksp, GroupDetectorsBy=self._grouping,\
OutputWorkspace=str(wksp)+"group")
if (numGroupedSpectra==0) or (numGroups==0):
raise RuntimeError("%d spectra will be in %d groups" % (numGroupedSpectra, numGroups))
lcinst = str(self._instrument)
if "dspacemap" in self._outTypes:
#write Dspacemap file
outfilename = self._outDir+lcinst+"_dspacemap_d"+str(wksp).strip(self._instrument+"_")+strftime("_%Y_%m_%d.dat")
SaveDspacemap(InputWorkspace=str(wksp)+"offset",
if "calibration" in self._outTypes:
SaveCalFile(OffsetsWorkspace=str(wksp)+"offset",
GroupingWorkspace=str(wksp)+"group",
MaskWorkspace=str(wksp)+"mask",Filename=calib)
if outfilename is not None:
self.setProperty("OutputFilename", outfilename)
def _multicalibrate(self, wksp, calib):
if wksp is None:
return None
LRef = self.getProperty("UnwrapRef").value
DIFCref = self.getProperty("LowResRef").value
if (LRef > 0.) or (DIFCref > 0.): # super special Jason stuff
if LRef > 0:
wksp = UnwrapSNS(InputWorkspace=wksp, OutputWorkspace=wksp.name(), LRef=LRef)
if DIFCref > 0:
wksp = RemoveLowResTOF(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
ReferenceDIFC=DIFCref)
if not self.getProperty("CompressOnRead").value and not "histo" in self.getProperty("Extension").value:
wksp = CompressEvents(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Tolerance=COMPRESS_TOL_TOF) # 100ns
wksp = ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp.name(), Target="dSpacing")
if not "histo" in self.getProperty("Extension").value:
SortEvents(InputWorkspace=wksp, SortBy="X Value")
# Sum pixelbin X pixelbin blocks of pixels
if self._xpixelbin*self._ypixelbin>1:
wksp = SumNeighbours(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
SumX=self._xpixelbin, SumY=self._ypixelbin)
# Bin events in d-Spacing
if not "histo" in self.getProperty("Extension").value:
wksp = Rebin(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Params=str(self._binning[0])+","+str((self._binning[1]))+","+str(self._binning[2]))
(dummy, numGroupedSpectra, numGroups) = CreateGroupingWorkspace(InputWorkspace=wksp, GroupDetectorsBy=self._grouping,\
OutputWorkspace=str(wksp)+"group")
if (numGroupedSpectra==0) or (numGroups==0):
raise RuntimeError("%d spectra will be in %d groups" % (numGroupedSpectra, numGroups))
if len(self._smoothGroups) > 0:
wksp = SmoothData(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
NPoints=self._smoothGroups, GroupingWorkspace=str(wksp)+"group")
# Remove old calibration files
cmd = "rm "+calib
os.system(cmd)
# Get the fit window input workspace
fitwinws = self.getProperty("FitwindowTableWorkspace").value
# Set up resolution workspace
resws = self.getProperty("DetectorResolutionWorkspace").value
if resws is not None:
resrange = self.getProperty("AllowedResRange").value
if len(resrange) < 2:
raise NotImplementedError("With input of 'DetectorResolutionWorkspace', "+\
"number of allowed resolution range must be equal to 2.")
reslowf = resrange[0]
resupf = resrange[1]
if reslowf >= resupf:
raise NotImplementedError("Allowed resolution range factor, lower boundary "+\
"(%f) must be smaller than upper boundary (%f)."\
% (reslowf, resupf))
else:
reslowf = 0.0
resupf = 0.0
# Get offsets for pixels using interval around cross correlations center and peak at peakpos (d-Spacing)
GetDetOffsetsMultiPeaks(InputWorkspace=str(wksp), OutputWorkspace=str(wksp)+"offset",
DReference=self._peakpos,
FitWindowMaxWidth=self.getProperty("PeakWindowMax").value,
MinimumPeakHeight=self.getProperty("MinimumPeakHeight").value,
MinimumPeakHeightObs=self.getProperty("MinimumPeakHeightObs").value,
BackgroundType=self.getProperty("BackgroundType").value,
MaxOffset=self._maxoffset, NumberPeaksWorkspace=str(wksp)+"peaks",
MaskWorkspace=str(wksp)+"mask",
FitwindowTableWorkspace = fitwinws,
InputResolutionWorkspace=resws,
MinimumResolutionFactor = reslowf,
MaximumResolutionFactor = resupf)
#Fixed SmoothNeighbours for non-rectangular and rectangular
if self._smoothoffsets and self._xpixelbin*self._ypixelbin>1: # Smooth data if it was summed
SmoothNeighbours(InputWorkspace=str(wksp)+"offset", OutputWorkspace=str(wksp)+"offset",
WeightedSum="Flat",
AdjX=self._xpixelbin, AdjY=self._ypixelbin)
wksp = Rebin(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
Params=str(self._binning[0])+","+str((self._binning[1]))+","+str(self._binning[2]))
lcinst = str(self._instrument)
if "dspacemap" in self._outTypes:
#write Dspacemap file
outfilename = self._outDir+lcinst+"_dspacemap_d"+str(wksp).strip(self._instrument+"_")+strftime("_%Y_%m_%d.dat")
SaveDspacemap(InputWorkspace=str(wksp)+"offset",
if "calibration" in self._outTypes:
SaveCalFile(OffsetsWorkspace=str(wksp)+"offset",
GroupingWorkspace=str(wksp)+"group",
MaskWorkspace=str(wksp)+"mask", Filename=calib)
if outfilename is not None:
self.setProperty("OutputFilename", outfilename)
if wksp is None:
return None
MaskDetectors(Workspace=wksp, MaskedWorkspace=str(wksp)+"mask")
wksp = AlignDetectors(InputWorkspace=wksp, OutputWorkspace=wksp.name(),\
OffsetsWorkspace=str(wksp)+"offset")
# Diffraction focusing using new calibration file with offsets
if self._diffractionfocus:
wksp = DiffractionFocussing(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
GroupingWorkspace=str(wksp)+"group")
if not "histo" in self.getProperty("Extension").value:
SortEvents(InputWorkspace=wksp, SortBy="X Value")
wksp = Rebin(InputWorkspace=wksp, OutputWorkspace=wksp.name(), Params=self._binning)
return wksp
def PyExec(self):
# get generic information
SUFFIX = self.getProperty("Extension").value
self._binning = self.getProperty("Binning").value
if len(self._binning) != 1 and len(self._binning) != 3:
raise RuntimeError("Can only specify (width) or (start,width,stop) for binning. Found %d values." % len(self._binning))
if len(self._binning) == 3:
if self._binning[0] == 0. and self._binning[1] == 0. and self._binning[2] == 0.:
raise RuntimeError("Failed to specify the binning")
self._instrument = self.getProperty("Instrument").value
config = ConfigService.Instance()
config['default.facility'] = "SNS"
config['default.instrument'] = self._instrument
self._grouping = self.getProperty("GroupDetectorsBy").value
self._xpixelbin = self.getProperty("XPixelSum").value
self._ypixelbin = self.getProperty("YPixelSum").value
self._smoothoffsets = self.getProperty("SmoothSummedOffsets").value
self._smoothGroups = self.getProperty("SmoothGroups").value
self._peakpos = self.getProperty("PeakPositions").value
if self.getProperty("CrossCorrelation").value:
self._peakpos1 = self._peakpos[0]
self._peakpos2 = 0
self._peakpos3 = 0
self._lastpixel = 0
self._lastpixel2 = 0
self._lastpixel3 = 0
peakhalfwidth = self.getProperty("PeakHalfWidth").value
self._peakmin = self._peakpos1-peakhalfwidth
self._peakmax = self._peakpos1+peakhalfwidth
if len(self._peakpos) >= 2:
self._peakpos2 = self._peakpos[1]
self._peakmin2 = self._peakpos2-peakhalfwidth
self._peakmax2 = self._peakpos2+peakhalfwidth
if len(self._peakpos) >= 3:
self._peakpos3 = self._peakpos[2]
self._peakmin3 = self._peakpos3-peakhalfwidth
self._peakmax3 = self._peakpos3+peakhalfwidth
detectors = self.getProperty("DetectorsPeaks").value
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
if detectors[0]:
self._lastpixel = int(detectors[0])
self._lastpixel3 = self._lastpixel
if len(detectors) >= 2:
self._lastpixel2 = self._lastpixel+int(detectors[1])
self._lastpixel3 = self._lastpixel2
if len(detectors) >= 3:
self._lastpixel3 = self._lastpixel2+int(detectors[2])
self._ccnumber = self.getProperty("CrossCorrelationPoints").value
self._maxoffset = self.getProperty("MaxOffset").value
self._diffractionfocus = self.getProperty("DiffractionFocusWorkspace").value
self._filterBadPulses = self.getProperty("FilterBadPulses").value
self._outDir = self.getProperty("OutputDirectory").value+"/"
self._outTypes = self.getProperty("SaveAs").value
samRuns = self.getProperty("RunNumber").value
backRuns = self.getProperty("Background").value
if len(samRuns) != len(backRuns):
if (len(backRuns) == 1 and backRuns[0] == 0) or (len(backRuns) <= 0):
backRuns = [0]*len(samRuns)
else:
raise RuntimeError("Number of samples and backgrounds must match (%d!=%d)" % (len(samRuns), len(backRuns)))
lcinst = str(self._instrument)
calib = self._outDir+lcinst+"_calibrate_d"+str(samRuns[0])+strftime("_%Y_%m_%d.cal")
filterWall = (self.getProperty("FilterByTimeMin").value, self.getProperty("FilterByTimeMax").value)
for (samNum, backNum) in zip(samRuns, backRuns):
# first round of processing the sample
samRun = self._loadData(samNum, SUFFIX, filterWall)
if backNum > 0:
backRun = self._loadData(backNum, SUFFIX, filterWall)
samRun -= backRun
samRun = CompressEvents(samRun, OutputWorkspace=samRun.name(),
Tolerance=COMPRESS_TOL_TOF) # 100ns
if self.getProperty("CrossCorrelation").value:
samRun = self._cccalibrate(samRun, calib)
samRun = self._multicalibrate(samRun, calib)
if self._xpixelbin*self._ypixelbin>1 or len(self._smoothGroups) > 0:
if AnalysisDataService.doesExist(str(samRun)):
AnalysisDataService.remove(str(samRun))
samRun = self._loadData(samNum, SUFFIX, filterWall)
LRef = self.getProperty("UnwrapRef").value
DIFCref = self.getProperty("LowResRef").value
if (LRef > 0.) or (DIFCref > 0.): # super special Jason stuff
if LRef > 0:
wksp = UnwrapSNS(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
LRef=LRef)
if DIFCref > 0:
wksp = RemoveLowResTOF(InputWorkspace=wksp, OutputWorkspace=wksp.name(),
ReferenceDIFC=DIFCref)
else:
samRun = ConvertUnits(InputWorkspace=samRun, OutputWorkspace=samRun.name(),
Target="TOF")
samRun = self._focus(samRun, calib)
RenameWorkspace(InputWorkspace=samRun, OutputWorkspace=str(samRun)+"_calibrated")
AlgorithmFactory.subscribe(CalibrateRectangularDetectors)