Newer
Older
from __future__ import (absolute_import, division, print_function)
import numpy as np
import matplotlib.pyplot as plt
import ICCFitTools as ICCFT
from mantid.simpleapi import *
from scipy.interpolate import interp1d
from scipy.ndimage.filters import convolve
from matplotlib.mlab import bivariate_normal
import ICConvoluted as ICC
import BivariateGaussian as BivariateGaussian
plt.ion()
def get3DPeak(peak, box, padeCoefficients, qMask, nTheta=150, nPhi=150, fracBoxToHistogram=1.0,
plotResults=False, zBG=1.96, bgPolyOrder=1, fICCParams=None, oldICCFit=None,
strongPeakParams=None, forceCutoff=250, edgeCutoff=15,
neigh_length_m=3, q_frame='sample', dtSpread=0.03, pplmin_frac=0.8, pplmax_frac=1.5, mindtBinWidth=1,
figureNumber=2):
n_events = box.getNumEventsArray()
if q_frame == 'lab':
q0 = peak.getQLabFrame()
elif q_frame == 'sample':
q0 = peak.getQSampleFrame()
else:
raise ValueError(
'BVGFT:get3DPeak - q_frame must be either \'lab\' or \'sample\'; %s was provided' % q_frame)
if fICCParams is None:
goodIDX, pp_lambda = ICCFT.getBGRemovedIndices(
n_events, peak=peak, box=box, qMask=qMask, calc_pp_lambda=True, padeCoefficients=padeCoefficients,
neigh_length_m=neigh_length_m, pp_lambda=None, pplmin_frac=pplmin_frac,
pplmax_frac=pplmax_frac, mindtBinWidth=mindtBinWidth)
YTOF, fICC, x_lims = fitTOFCoordinate(
box, peak, padeCoefficients, dtSpread=dtSpread, qMask=qMask, bgPolyOrder=bgPolyOrder, zBG=zBG,
plotResults=plotResults, pp_lambda=pp_lambda, neigh_length_m=neigh_length_m, pplmin_frac=pplmin_frac,
pplmax_frac=pplmax_frac, mindtBinWidth=mindtBinWidth)
else: # we already did I-C profile, so we'll just read the parameters
pp_lambda = fICCParams[-1]
fICC = ICC.IkedaCarpenterConvoluted()
fICC.init()
fICC['A'] = fICCParams[5]
fICC['B'] = fICCParams[6]
fICC['R'] = fICCParams[7]
fICC['T0'] = fICCParams[8]
fICC['Scale'] = fICCParams[9]
fICC['HatWidth'] = fICCParams[10]
fICC['KConv'] = fICCParams[11]
goodIDX, _ = ICCFT.getBGRemovedIndices(
n_events, pp_lambda=pp_lambda, qMask=qMask)
# Get the 3D TOF component, YTOF
if oldICCFit is not None:
x_lims = [np.min(oldICCFit[0]), np.max(oldICCFit[0])]
tofxx = oldICCFit[0]
tofyy = oldICCFit[2]
else:
dtSpread = 0.03
x_lims = [(1 - dtSpread) * peak.getTOF(),
(1 + dtSpread) * peak.getTOF()]
tofxx = np.arange(x_lims[0], x_lims[1], 5)
tofyy = fICC.function1D(tofxx)
ftof = interp1d(tofxx, tofyy, bounds_error=False, fill_value=0.0)
XTOF = boxToTOFThetaPhi(box, peak)[:, :, :, 0]
YTOF = ftof(XTOF)
# Get YBVG - the detector component
if goodIDX is not None:
goodIDX *= qMask
X = boxToTOFThetaPhi(box, peak)
dEdge = edgeCutoff
useForceParams = peak.getIntensity() < forceCutoff or peak.getRow() <= dEdge or peak.getRow(
) >= 255 - dEdge or peak.getCol() <= dEdge or peak.getCol() >= 255 - dEdge
if strongPeakParams is not None and useForceParams: # We will force parameters on this fit
ph = np.arctan2(q0[1], q0[0])
th = np.arctan2(q0[2], np.hypot(q0[0], q0[1]))
phthPeak = np.array([ph, th])
tmp = strongPeakParams[:, :2] - phthPeak
distSq = tmp[:, 0]**2 + tmp[:, 1]**2
nnIDX = np.argmin(distSq)
logger.information('Using [ph, th] = [{:2.2f},{:2.2f}] for [{:2.2f},{:2.2f}]'.format(strongPeakParams[nnIDX,0],
strongPeakParams[nnIDX,1],
phthPeak[0],
phthPeak[1]))
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
params, h, t, p = doBVGFit(box, nTheta=nTheta, nPhi=nPhi, fracBoxToHistogram=fracBoxToHistogram,
goodIDX=goodIDX, forceParams=strongPeakParams[nnIDX])
else: # Just do the fit - no nearest neighbor assumptions
params, h, t, p = doBVGFit(
box, nTheta=nTheta, nPhi=nPhi, fracBoxToHistogram=fracBoxToHistogram, goodIDX=goodIDX)
if plotResults:
compareBVGFitData(
box, params[0], nTheta, nPhi, fracBoxToHistogram=fracBoxToHistogram, useIDX=goodIDX,
figNumber=figureNumber)
# set up the BVG
# A = params[0][0] # never used
mu0 = params[0][1]
mu1 = params[0][2]
sigX = params[0][3]
sigY = params[0][4]
p = params[0][5]
bgBVG = params[0][6]
sigma = np.array([[sigX**2, p * sigX * sigY], [p * sigX * sigY, sigY**2]])
mu = np.array([mu0, mu1])
XTOF = X[:, :, :, 0]
XTHETA = X[:, :, :, 1]
XPHI = X[:, :, :, 2]
YBVG = bvg(1.0, mu, sigma, XTHETA, XPHI, 0)
# Do scaling to the data
Y, redChiSq, scaleFactor = fitScaling(n_events, box, YTOF, YBVG)
YBVG2 = bvg(1.0, mu, sigma, XTHETA, XPHI, 0)
YTOF2 = getYTOF(fICC, XTOF, x_lims)
Y2 = YTOF2 * YBVG2
Y2 = scaleFactor * Y2 / Y2.max()
QX, QY, QZ = ICCFT.getQXQYQZ(box)
fitMaxIDX = tuple(np.array(np.unravel_index(Y2.argmax(), Y2.shape)))
newCenter = np.array([QX[fitMaxIDX], QY[fitMaxIDX], QZ[fitMaxIDX]])
# Set a dictionary with the parameters to return
retParams = {}
retParams['Alpha'] = fICC['A']
retParams['Beta'] = fICC['B']
retParams['R'] = fICC['R']
retParams['T0'] = fICC['T0']
retParams['Scale'] = fICC['Scale']
retParams['KConv'] = fICC['KConv']
retParams['MuTH'] = mu0
retParams['MuPH'] = mu1
retParams['SigX'] = sigX
retParams['SigY'] = sigY
retParams['SigP'] = p
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
retParams['bgBVG'] = bgBVG
retParams['scale3d'] = scaleFactor
retParams['chiSq3d'] = redChiSq
retParams['dQ'] = np.linalg.norm(newCenter - q0)
retParams['newQ'] = newCenter
return Y2, goodIDX, pp_lambda, retParams
def boxToTOFThetaPhi(box, peak):
QX, QY, QZ = ICCFT.getQXQYQZ(box)
R, THETA, PHI = ICCFT.cart2sph(QX, QY, QZ)
flightPath = peak.getL1() + peak.getL2()
scatteringHalfAngle = 0.5 * peak.getScattering()
TOF = 3176.507 * flightPath * np.sin(scatteringHalfAngle) / np.abs(R)
X = np.empty(TOF.shape + (3,))
X[:, :, :, 0] = TOF
X[:, :, :, 1] = THETA
X[:, :, :, 2] = PHI
return X
def fitScaling(n_events, box, YTOF, YBVG, goodIDX=None, neigh_length_m=3):
YJOINT = 1.0 * YTOF * YBVG
YJOINT /= 1.0 * YJOINT.max()
convBox = 1.0 * \
np.ones([neigh_length_m, neigh_length_m, neigh_length_m]) / \
neigh_length_m**3
conv_n_events = convolve(n_events, convBox)
QX, QY, QZ = ICCFT.getQXQYQZ(box)
dP = 8
fitMaxIDX = tuple(
np.array(np.unravel_index(YJOINT.argmax(), YJOINT.shape)))
if goodIDX is None:
goodIDX = np.zeros_like(YJOINT).astype(np.bool)
goodIDX[max(fitMaxIDX[0] - dP, 0):min(fitMaxIDX[0] + dP, goodIDX.shape[0]),
max(fitMaxIDX[1] - dP, 0):min(fitMaxIDX[1] + dP, goodIDX.shape[1]),
max(fitMaxIDX[2] - dP, 0):min(fitMaxIDX[2] + dP, goodIDX.shape[2])] = True
goodIDX = np.logical_and(goodIDX, conv_n_events > 0)
# A1 = slope, A0 = offset
scaleLinear = Polynomial(n=1)
scaleLinear.constrain("A1>0")
scaleX = YJOINT[goodIDX]
scaleY = n_events[goodIDX]
# , dataE=np.sqrt(scaleY))
scaleWS = CreateWorkspace(
OutputWorkspace='scaleWS', dataX=scaleX, dataY=scaleY)
fitResultsScaling = Fit(Function=scaleLinear, InputWorkspace=scaleWS,
Output='scalefit', CostFunction='Unweighted least squares')
A0 = fitResultsScaling[3].row(0)['Value']
A1 = fitResultsScaling[3].row(1)['Value']
YRET = A1 * YJOINT + A0
chiSqRed = fitResultsScaling[1]
return YRET, chiSqRed, A1
def getXTOF(box, peak):
from mantid.kernel import V3D
QX, QY, QZ = ICCFT.getQXQYQZ(box)
origQS = peak.getQSampleFrame()
tList = np.zeros_like(QX)
for i in xrange(QX.shape[0]):
for j in xrange(QX.shape[1]):
for k in xrange(QX.shape[2]):
newQ = V3D(QX[i, j, k], QY[i, j, k], QZ[i, j, k])
peak.setQSampleFrame(newQ)
flightPath = peak.getL1() + peak.getL2()
scatteringHalfAngle = 0.5 * peak.getScattering()
# convert to microseconds)
tList[i, j, k] = 3176.507 * flightPath * \
np.sin(scatteringHalfAngle) / np.linalg.norm(newQ)
peak.setQSampleFrame(origQS)
return tList
def fitTOFCoordinate(box, peak, padeCoefficients, dtSpread=0.03, minFracPixels=0.01,
neigh_length_m=3, zBG=1.96, bgPolyOrder=1, qMask=None, plotResults=False,
fracStop=0.01, pp_lambda=None, pplmin_frac=0.8, pplmax_frac=1.5, mindtBinWidth=1):
# Get info from the peak
tof = peak.getTOF() # in us
wavelength = peak.getWavelength() # in Angstrom
flightPath = peak.getL1() + peak.getL2() # in m
scatteringHalfAngle = 0.5 * peak.getScattering()
energy = 81.804 / wavelength**2 / 1000.0 # in eV
# Set the qMask
if qMask is None:
qMask = np.ones_like(box.getNumEventsArray()).astype(np.bool)
# Calculate the optimal pp_lambda and
tofWS, ppl = ICCFT.getTOFWS(box, flightPath, scatteringHalfAngle, tof, peak, qMask,
dtSpread=dtSpread, minFracPixels=minFracPixels,
neigh_length_m=neigh_length_m, zBG=zBG, pp_lambda=pp_lambda,
pplmin_frac=pplmin_frac, pplmax_frac=pplmax_frac,
mindtBinWidth=mindtBinWidth)
fitResults, fICC = ICCFT.doICCFit(tofWS, energy, flightPath,
padeCoefficients, fitOrder=bgPolyOrder, constraintScheme=1)
for i, param in enumerate(['A', 'B', 'R', 'T0', 'Scale', 'HatWidth', 'KConv']):
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
fICC[param] = mtd['fit_Parameters'].row(i)['Value']
bgParamsRows = [7 + i for i in range(bgPolyOrder + 1)]
bgCoeffs = []
for bgRow in bgParamsRows[::-1]: # reverse for numpy order
bgCoeffs.append(mtd['fit_Parameters'].row(bgRow)['Value'])
x = tofWS.readX(0)
yFit = mtd['fit_Workspace'].readY(1)
interpF = interp1d(x, yFit, kind='cubic')
tofxx = np.linspace(tofWS.readX(0).min(), tofWS.readX(0).max(), 1000)
tofyy = interpF(tofxx)
if plotResults:
plt.figure(1)
plt.clf()
plt.plot(tofxx, tofyy, label='Interpolated')
plt.plot(tofWS.readX(0), tofWS.readY(0), 'o', label='Data')
plt.plot(mtd['fit_Workspace'].readX(1),
mtd['fit_Workspace'].readY(1), label='Fit')
plt.title(fitResults.OutputChi2overDoF)
plt.legend(loc='best')
ftof = interp1d(tofxx, tofyy, bounds_error=False, fill_value=0.0)
XTOF = boxToTOFThetaPhi(box, peak)[:, :, :, 0]
YTOF = ftof(XTOF)
return YTOF, fICC, [tofWS.readX(0).min(), tofWS.readX(0).max()]
def getYTOF(fICC, XTOF, xlims):
tofxx = np.linspace(xlims[0], xlims[1], 1000)
tofyy = fICC.function1D(tofxx)
ftof = interp1d(tofxx, tofyy, bounds_error=False, fill_value=0.0)
YTOF = ftof(XTOF)
return YTOF
def getAngularHistogram(box, useIDX=None, nTheta=200, nPhi=200, zBG=1.96, neigh_length_m=3, fracBoxToHistogram=1.0):
n_events = box.getNumEventsArray()
hasEventsIDX = n_events > 0
if useIDX is None:
if zBG >= 0:
goodIDX, pp_lambda = ICCFT.getBGRemovedIndices(n_events)
else:
goodIDX = hasEventsIDX
useIDX = goodIDX
# Setup our coordinates
QX, QY, QZ = ICCFT.getQXQYQZ(box)
R, THETA, PHI = ICCFT.cart2sph(QX, QY, QZ)
thetaMin = np.min(THETA)
thetaMax = np.max(THETA)
dTheta = thetaMax - thetaMin
thetaMid = 0.5 * (thetaMin + thetaMax)
thetaMin = max(thetaMin, thetaMid - dTheta * fracBoxToHistogram / 2.0)
thetaMax = min(thetaMax, thetaMid + dTheta * fracBoxToHistogram / 2.0)
phiMin = np.min(PHI)
phiMax = np.max(PHI)
dPhi = phiMax - phiMin
phiMid = 0.5 * (phiMin + phiMax)
phiMin = max(phiMin, phiMid - dPhi * fracBoxToHistogram / 2.0)
phiMax = min(phiMax, phiMid + dPhi * fracBoxToHistogram / 2.0)
thetaBins = np.linspace(thetaMin, thetaMax, nTheta)
phiBins = np.linspace(phiMin, phiMax, nPhi)
thetaVect = THETA[useIDX]
phiVect = PHI[useIDX]
nVect = n_events[useIDX]
# Do the histogram
h, thBins, phBins = np.histogram2d(
thetaVect, phiVect, weights=nVect, bins=[thetaBins, phiBins])
return h, thBins, phBins
def getBVGResult(box, params, nTheta=200, nPhi=200, fracBoxToHistogram=1.0):
h, thBins, phBins = getAngularHistogram(
box, nTheta=nTheta, nPhi=nPhi, fracBoxToHistogram=fracBoxToHistogram)
thCenters = 0.5 * (thBins[1:] + thBins[:-1])
phCenters = 0.5 * (phBins[1:] + phBins[:-1])
TH, PH = np.meshgrid(thCenters, phCenters, indexing='ij', copy=False)
# Set our initial guess
m = BivariateGaussian.BivariateGaussian()
m.init()
m['A'] = params[0]
m['MuX'] = params[1]
m['MuY'] = params[2]
m['SigX'] = params[3]
m['SigY'] = params[4]
m['SigP'] = params[5]
m['Bg'] = params[6]
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
m.setAttributeValue('nX', h.shape[0])
m.setAttributeValue('nY', h.shape[1])
pos = np.empty(TH.shape + (2,))
pos[:, :, 0] = TH
pos[:, :, 1] = PH
Y = m.function2D(pos)
return Y
def compareBVGFitData(box, params, nTheta=200, nPhi=200, figNumber=2, fracBoxToHistogram=1.0, useIDX=None):
'''
compareBVGFitData is used for comparing a fit and the histogram. Useful for debugging.
'''
h, thBins, phBins = getAngularHistogram(
box, nTheta=nTheta, nPhi=nPhi, fracBoxToHistogram=fracBoxToHistogram, useIDX=useIDX)
Y = getBVGResult(box, params, nTheta=nTheta, nPhi=nPhi,
fracBoxToHistogram=fracBoxToHistogram)
pLow = 0.0
pHigh = 1.0
nX, nY = Y.shape
plt.figure(figNumber)
plt.clf()
plt.subplot(2, 2, 1)
plt.imshow(h, vmin=0, vmax=0.7 * np.max(h), interpolation='None')
plt.xlim([pLow * nX, pHigh * nX])
plt.ylim([pLow * nY, pHigh * nY])
if useIDX is None:
plt.title('Measured Peak')
else:
plt.title('BG Removed Measured Peak')
plt.colorbar()
plt.subplot(2, 2, 2)
plt.imshow(Y, vmin=0, vmax=0.7 * np.max(h), interpolation='None')
plt.title('Modeled Peak')
plt.xlim([pLow * nX, pHigh * nX])
plt.ylim([pLow * nY, pHigh * nY])
plt.colorbar()
plt.subplot(2, 2, 3)
plt.imshow(h - Y, interpolation='None')
plt.xlim([pLow * nX, pHigh * nX])
plt.ylim([pLow * nY, pHigh * nY])
plt.xlabel('Difference')
plt.colorbar()
if useIDX is not None:
h0, thBins, phBins = getAngularHistogram(
box, nTheta=nTheta, nPhi=nPhi, fracBoxToHistogram=fracBoxToHistogram, useIDX=None)
plt.subplot(2, 2, 4)
plt.imshow(h0, vmin=0, vmax=1.0 * np.max(h0), interpolation='None')
plt.xlim([pLow * nX, pHigh * nX])
plt.ylim([pLow * nY, pHigh * nY])
plt.xlabel('Measured Peak')
plt.colorbar()
def doBVGFit(box, nTheta=200, nPhi=200, zBG=1.96, fracBoxToHistogram=1.0, goodIDX=None,
forceParams=None, forceTolerance=0.1, dth=10, dph=10):
"""
doBVGFit takes a binned MDbox and returns the fit of the peak shape along the non-TOF direction. This is done in one of two ways:
1) Standard least squares fit of the 2D histogram.
2) Forcing a set of parameters. Under this, parameters are tightly constrained. The peak center may move by (dth, dph) from
predicted position (in units of histogram pixels) and sigma parameters can change by a factor of forceTolerance.
Input:
box: a binned 'MDbox'.
nTheta, nPhi: integer, number of bins to use when creating 2D BVG histogram
zBG: Z score at which we consider events to be above BG #TODO: I think this can be removed since we pass in goodIDX?
fracBoxToHistrogram: Leave at 1.0 to histogram whole box. Any values lower will remove the edges of box before
histogramming.
goodIDX: a numpy array of shape box.getNumEventsArray().shape. True for voxels we will histogram (i.e. False if the
events in this voxel are background.)
forceParams: set of parameters to force. These are the same format as a row in strongPeaksParams
forceTolerance: the factor we allow sigX, sigY, sigP to change when forcing peaks. Not used if forceParams is None.
dth, dph: The peak center may move by (dth, dph) from predicted position (in units of histogram pixels).
"""
h, thBins, phBins = getAngularHistogram(
box, nTheta=nTheta, nPhi=nPhi, zBG=zBG, fracBoxToHistogram=fracBoxToHistogram, useIDX=goodIDX)
thCenters = 0.5 * (thBins[1:] + thBins[:-1])
phCenters = 0.5 * (phBins[1:] + phBins[:-1])
TH, PH = np.meshgrid(thCenters, phCenters, indexing='ij', copy=False)
weights = np.sqrt(h)
weights[weights < 1] = 1
pos = np.empty(TH.shape + (2,))
pos[:, :, 0] = TH
pos[:, :, 1] = PH
H = np.empty(h.shape + (2,))
H[:, :, 0] = h
H[:, :, 1] = h
def fSigP(x, a, k, phi, b):
return a * np.sin((k * x) - phi) + b * x
if forceParams is None:
meanTH = TH.mean()
meanPH = PH.mean()
# sigX0 = 0.0018
# sigX0 = 0.002#ICCFT.oldScatFun(meanPH, 1.71151521e-02, 6.37218400e+00, 3.39439675e-03)
sigX0 = ICCFT.oldScatFun(
meanPH, 1.71151521e-02, 6.37218400e+00, 3.39439675e-03)
sigY0 = 0.0025
sigP0 = fSigP(meanTH, 0.1460775, 1.85816592,
0.26850086, -0.00725352)
# Set some constraints
boundsDict = {}
boundsDict['A'] = [0.0, np.inf]
boundsDict['MuX'] = [thBins[thBins.size // 2 - dth],
thBins[thBins.size // 2 + dth]]
boundsDict['MuY'] = [phBins[phBins.size // 2 - dph],
phBins[phBins.size // 2 + dph]]
# boundsDict['sigX'] = [0.7*sigX0, 1.3*sigX0]
boundsDict['SigX'] = [0., 0.02]
boundsDict['SigY'] = [0., 0.02]
boundsDict['SigP'] = [-1., 1.]
boundsDict['Bg'] = [0, np.inf]
# Set our initial guess
m = BivariateGaussian.BivariateGaussian()
m.init()
m['A'] = 1.
#m['MuX'] = meanTH
#m['MuY'] = meanPH
m['MuX'] = TH[np.unravel_index(h.argmax(), h.shape)]
m['MuY'] = PH[np.unravel_index(h.argmax(), h.shape)]
m['SigX'] = sigX0
m['SigY'] = sigY0
m['SigP'] = sigP0
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
m.setAttributeValue('nX', h.shape[0])
m.setAttributeValue('nY', h.shape[1])
m.setConstraints(boundsDict)
# Do the fit
bvgWS = CreateWorkspace(OutputWorkspace='bvgWS', DataX=pos.ravel(
), DataY=H.ravel(), DataE=np.sqrt(H.ravel()))
fitResults = Fit(Function=m, InputWorkspace='bvgWS', Output='bvgfit',
Minimizer='Levenberg-MarquardtMD')
elif forceParams is not None:
p0 = np.zeros(7)
p0[0] = np.max(h)
p0[1] = TH.mean()
p0[2] = PH.mean()
p0[3] = forceParams[5]
p0[4] = forceParams[6]
p0[5] = forceParams[7]
# Set some constraints
isPos = np.sign(p0)
bounds = ((1.0 - isPos * forceTolerance) * p0, (1.0 + isPos * forceTolerance) * p0)
bounds[0][0] = 0.0
bounds[1][0] = np.inf # Amplitude
bounds[0][1] = min(thBins[thBins.size // 2 - dth],
thBins[thBins.size // 2 + dth])
bounds[1][1] = max(thBins[thBins.size // 2 - dth],
thBins[thBins.size // 2 + dth])
bounds[0][2] = min(phBins[phBins.size // 2 - dph],
phBins[phBins.size // 2 + dph])
bounds[1][2] = max(phBins[phBins.size // 2 - dph],
phBins[phBins.size // 2 + dph])
bounds[1][-1] = np.inf
boundsDict = {}
boundsDict['A'] = [0.0, np.inf]
boundsDict['MuX'] = [thBins[thBins.size // 2 - dth],
thBins[thBins.size // 2 + dth]]
boundsDict['MuY'] = [phBins[phBins.size // 2 - dph],
phBins[phBins.size // 2 + dph]]
boundsDict['SigX'] = [bounds[0][3], bounds[1][3]]
boundsDict['SigY'] = [bounds[0][4], bounds[1][4]]
boundsDict['SigP'] = [bounds[0][5], bounds[1][5]]
# Set our initial guess
m = BivariateGaussian.BivariateGaussian()
m.init()
m['A'] = 0.1
#m['muX'] = np.average(thCenters,weights=np.sum(h,axis=1))
#m['muY'] = np.average(phCenters,weights=np.sum(h,axis=0))
#m['muX'] = TH.mean()
#m['muY'] = PH.mean()
m['MuX'] = TH[np.unravel_index(h.argmax(), h.shape)]
m['MuY'] = PH[np.unravel_index(h.argmax(), h.shape)]
m['SigX'] = forceParams[5]
m['SigY'] = forceParams[6]
m['SigP'] = forceParams[7]
m.setAttributeValue('nX', h.shape[0])
m.setAttributeValue('nY', h.shape[1])
m.setConstraints(boundsDict)
# Do the fit
#plt.figure(18); plt.clf(); plt.imshow(m.function2D(pos)); plt.title('BVG Initial guess')
bvgWS = CreateWorkspace(OutputWorkspace='bvgWS', DataX=pos.ravel(), DataY=H.ravel(), DataE=np.sqrt(H.ravel()))
fitFun = m
fitResults = Fit(Function=fitFun, InputWorkspace=bvgWS,
Output='bvgfit', Minimizer='Levenberg-MarquardtMD')
# Recover the result
m = BivariateGaussian.BivariateGaussian()
m.init()
m['A'] = mtd['bvgfit_Parameters'].row(0)['Value']
m['MuX'] = mtd['bvgfit_Parameters'].row(1)['Value']
m['MuY'] = mtd['bvgfit_Parameters'].row(2)['Value']
m['SigX'] = mtd['bvgfit_Parameters'].row(3)['Value']
m['SigY'] = mtd['bvgfit_Parameters'].row(4)['Value']
m['SigP'] = mtd['bvgfit_Parameters'].row(5)['Value']
m['Bg'] = mtd['bvgfit_Parameters'].row(6)['Value']
m.setAttributeValue('nX', h.shape[0])
m.setAttributeValue('nY', h.shape[1])
chiSq = fitResults[1]
params = [[m['A'], m['MuX'], m['MuY'], m['SigX'],
m['SigY'], m['SigP'], m['Bg']], chiSq]
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
return params, h, thBins, phBins
def is_pos_def(x): # Checks if matrix x is positive definite
return np.all(np.linalg.eigvals(x) > 0)
def bvg(A, mu, sigma, x, y, bg):
"""
bvg is the bivariate gaussian. This function is a convenient wrapper for
multivariate_normal.
Intput:
A: amplitude
mu: 2 element array containing [muX, muY]
sigma: SIGMA matrix [[sigX**2, sigX*sigY*sigP],[sigX*sigY*sigP,sigY**2]]
x: numy array containing the x coordinates (e.g. theta for detector space)
y: numy array containing the y coordinates (e.g. phi_az for detector space)
bg: constant for the background
Output:
a numpy array with the same shape as x. If sigma is not positive-definite,
this array will contain all zeros. Otherwise, the BVG will be evaluated
at each point at the value is returned.
"""
if is_pos_def(sigma):
f = bivariate_normal(x, y, sigmax=np.sqrt(sigma[0, 0]), sigmay=np.sqrt(sigma[1, 1]),
sigmaxy=sigma[1, 0], mux=mu[0], muy=mu[1])
return A * f + bg
else:
system.information(' BVGFT:bvg:not PSD Matrix')
return 0.0 * np.ones_like(x)