Newer
Older
Peterson, Peter
committed
#ifndef STATISTICSTEST_H_
#define STATISTICSTEST_H_
#include <cxxtest/TestSuite.h>
#include <cmath>
Peterson, Peter
committed
#include <vector>
#include <string>
#include "MantidKernel/Statistics.h"
using namespace Mantid::Kernel;
using std::string;
using std::vector;
class StatisticsTest : public CxxTest::TestSuite
{
public:
void testDoubleOdd()
{
vector<double> data;
data.push_back(17.2);
data.push_back(18.1);
data.push_back(16.5);
data.push_back(18.3);
data.push_back(12.6);
Statistics stats = getStatistics(data);
TS_ASSERT_EQUALS(stats.mean, 16.54);
TS_ASSERT_DELTA(stats.standard_deviation, 2.0732, 0.0001);
TS_ASSERT_EQUALS(stats.minimum, 12.6);
TS_ASSERT_EQUALS(stats.maximum, 18.3);
TS_ASSERT_EQUALS(stats.median, 17.2);
}
void testZscores()
{
vector<double> data;
data.push_back(12);
data.push_back(13);
data.push_back(9);
data.push_back(18);
data.push_back(7);
data.push_back(9);
data.push_back(14);
data.push_back(16);
data.push_back(10);
data.push_back(12);
data.push_back(7);
data.push_back(13);
data.push_back(14);
data.push_back(19);
data.push_back(10);
data.push_back(16);
data.push_back(12);
data.push_back(16);
data.push_back(19);
data.push_back(11);
std::vector<double> Zscore = getZscore(data);
TS_ASSERT_DELTA(Zscore[4], 1.6397, 0.0001);
TS_ASSERT_DELTA(Zscore[6], 0.3223, 0.0001);
std::vector<double> ZModscore = getModifiedZscore(data);
TS_ASSERT_DELTA(ZModscore[4], 1.2365, 0.0001);
TS_ASSERT_DELTA(ZModscore[6], 0.3372, 0.0001);
Peterson, Peter
committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
}
void testDoubleSingle()
{
vector<double> data;
data.push_back(42.);
Statistics stats = getStatistics(data);
TS_ASSERT_EQUALS(stats.mean, 42.);
TS_ASSERT_EQUALS(stats.standard_deviation, 0.);
TS_ASSERT_EQUALS(stats.minimum, 42.);
TS_ASSERT_EQUALS(stats.maximum, 42.);
TS_ASSERT_EQUALS(stats.median, 42.);
}
void testInt32Even()
{
vector<int32_t> data;
data.push_back(1);
data.push_back(2);
data.push_back(3);
data.push_back(4);
data.push_back(5);
data.push_back(6);
Statistics stats = getStatistics(data);
TS_ASSERT_EQUALS(stats.mean, 3.5);
TS_ASSERT_DELTA(stats.standard_deviation, 1.7078, 0.0001);
TS_ASSERT_EQUALS(stats.minimum, 1.);
TS_ASSERT_EQUALS(stats.maximum, 6.);
TS_ASSERT_EQUALS(stats.median, 3.5);
}
bool my_isnan(const double number)
{
return number != number;
}
void testString()
{
vector<string> data;
data.push_back("hi there");
Statistics stats = getStatistics(data);
TS_ASSERT(my_isnan(stats.mean));
TS_ASSERT(my_isnan(stats.standard_deviation));
TS_ASSERT(my_isnan(stats.minimum));
TS_ASSERT(my_isnan(stats.maximum));
TS_ASSERT(my_isnan(stats.median));
}
/** Test function to calculate Rwp
*/
void testRwp()
{
vector<double> obsY(4);
vector<double> calY(4);
vector<double> obsE(4);
obsY[0] = 1.0;
calY[0] = 1.1;
obsE[0] = 1.0;
obsY[1] = 2.0;
calY[1] = 2.1;
obsE[1] = 1.2;
obsY[2] = 3.0;
calY[2] = 3.5;
obsE[2] = 1.4;
obsY[3] = 1.0;
calY[3] = 1.3;
obsE[3] = 1.0;
Rfactor rfactor = getRFactor(obsY, calY, obsE);
TS_ASSERT_DELTA(rfactor.Rwp, 0.1582, 0.0001);
}
/** Test throw exception
*/
void testRwpException1()
{
vector<double> obsY(4);
vector<double> calY(4);
vector<double> obsE(3);
obsY[0] = 1.0;
calY[0] = 1.1;
obsE[0] = 1.0;
obsY[1] = 2.0;
calY[1] = 2.1;
obsE[1] = 1.2;
obsY[2] = 3.0;
calY[2] = 3.5;
obsE[2] = 1.4;
obsY[3] = 1.0;
calY[3] = 1.3;
TS_ASSERT_THROWS_ANYTHING(getRFactor(obsY, calY, obsE));
/** Test throw exception on empty array
*/
void testRwpException2()
{
vector<double> obsY;
vector<double> calY;
vector<double> obsE;
TS_ASSERT_THROWS_ANYTHING(getRFactor(obsY, calY, obsE));
}
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/// Test moment calculations about origin and mean
void test_getMoments()
{
const double mean = 5.;
const double sigma = 4.;
const double deltaX = .2;
const size_t numX = 200;
// calculate to have same number of points left and right of function
const double offsetX = mean - (.5 * deltaX * static_cast<double>(numX));
// variance about origin
double expVar = mean*mean+sigma*sigma;
// skew about origin
double expSkew = mean*mean*mean+3.*mean*sigma*sigma;
// x-values to try out
vector<double> x;
for (size_t i = 0; i < numX; ++i)
x.push_back(static_cast<double>(i) * deltaX + offsetX);
// just declare so we can have test of exception handling
vector<double> y;
TS_ASSERT_THROWS(getMomentsAboutOrigin(x, y), std::out_of_range);
// now calculate the y-values
for (size_t i = 0; i < numX; ++i)
{
double temp = (x[i]-mean)/sigma;
y.push_back(exp(-.5*temp*temp)/(sigma * sqrt(2.*M_PI)));
}
// Normal distribution values are taken from the wikipedia page
{
std::cout << "Normal distribution about origin" << std::endl;
vector<double> aboutOrigin = getMomentsAboutOrigin(x, y);
TS_ASSERT_EQUALS(aboutOrigin.size(), 4);
TS_ASSERT_DELTA(aboutOrigin[0], 1., .0001);
TS_ASSERT_DELTA(aboutOrigin[1], mean, .0001);
TS_ASSERT_DELTA(aboutOrigin[2], expVar, .001*expVar);
TS_ASSERT_DELTA(aboutOrigin[3], expSkew, .001*expSkew);
std::cout << "Normal distribution about mean" << std::endl;
vector<double> aboutMean = getMomentsAboutMean(x, y);
TS_ASSERT_EQUALS(aboutMean.size(), 4);
TS_ASSERT_DELTA(aboutMean[0], 1., .0001);
TS_ASSERT_DELTA(aboutMean[1], 0., .0001);
TS_ASSERT_DELTA(aboutMean[2], sigma*sigma, .001*expVar);
TS_ASSERT_DELTA(aboutMean[3], 0., .0001*expSkew);
}
// Now a gaussian function as a histogram
y.clear();
for (size_t i = 0; i < numX-1; ++i) // one less y than x makes it a histogram
{
double templeft = (x[i]-mean)/sigma;
templeft = exp(-.5*templeft*templeft)/(sigma * sqrt(2.*M_PI));
double tempright = (x[i+1]-mean)/sigma;
tempright = exp(-.5*tempright*tempright)/(sigma * sqrt(2.*M_PI));
y.push_back(.5*deltaX*(templeft+tempright));
// std::cout << i << ":\t" << x[i] << "\t" << y[i] << std::endl;
}
// Normal distribution values are taken from the wikipedia page
{
std::cout << "Normal distribution about origin" << std::endl;
vector<double> aboutOrigin = getMomentsAboutOrigin(x, y);
TS_ASSERT_EQUALS(aboutOrigin.size(), 4);
TS_ASSERT_DELTA(aboutOrigin[0], 1., .0001);
TS_ASSERT_DELTA(aboutOrigin[1], mean, .0001);
TS_ASSERT_DELTA(aboutOrigin[2], expVar, .001*expVar);
TS_ASSERT_DELTA(aboutOrigin[3], expSkew, .001*expSkew);
std::cout << "Normal distribution about mean" << std::endl;
vector<double> aboutMean = getMomentsAboutMean(x, y);
TS_ASSERT_EQUALS(aboutMean.size(), 4);
TS_ASSERT_DELTA(aboutMean[0], 1., .0001);
TS_ASSERT_DELTA(aboutMean[1], 0., .0001);
TS_ASSERT_DELTA(aboutMean[2], sigma*sigma, .001*expVar);
TS_ASSERT_DELTA(aboutMean[3], 0., .0001*expSkew);
}
}
Peterson, Peter
committed
};
#endif // STATISTICSTEST_H_