Newer
Older
from __future__ import (absolute_import, division, print_function)
from mantid.api import *
from mantid.simpleapi import *
from mantid.kernel import *
from six import iteritems
class LRScalingFactors(PythonAlgorithm):
"""
This algorithm runs through a sequence of direct beam data sets
to extract scaling factors. The method was developed by J. Ankner (ORNL).
As we loop through, we find matching data sets with the only
difference between the two is an attenuator.
The ratio of those matching data sets allows use to rescale
a direct beam run taken with a larger number of attenuators
to a standard data set taken with tighter slit settings and
no attenuators.
The normalization run for a data set taken in a given slit setting
configuration can then be expressed in terms of the standard 0-attenuator
data set with:
D_i = F_i D_0
Here's an example of runs and how they are related to F.
run: 55889, att: 0, s1: 0.26, s2: 0.26
run: 55890, att: 1, s1: 0.26, s2: 0.26
run: 55891, att: 1, s1: 0.33, s2: 0.26 --> F = 55891 / 55890
run: 55892, att: 1, s1: 0.45, s2: 0.26 --> F = 55892 / 55890
run: 55895, att: 1, s1: 0.81, s2: 0.26
run: 55896, att: 2, s1: 0.81, s2: 0.26
run: 55897, att: 2, s1: 1.05, s2: 0.35 --> F = 55897 / 55896 * 55895 / 55890
"""
def category(self):
return "Reflectometry\\SNS"
def name(self):
return "LiquidsReflectometryScalingFactors"
def version(self):
def summary(self):
return "Liquids Reflectometer (REFL) scaling factor calculation"
def PyInit(self):
self.declareProperty(IntArrayProperty("DirectBeamRuns", []),
"Run number of the signal run to use")
self.declareProperty(IntArrayProperty("Attenuators", []),
"Number of attenuators for each run")
self.declareProperty(FloatArrayProperty("TOFRange", [10000., 35000.],
FloatArrayLengthValidator(2),
direction=Direction.Input),
self.declareProperty(IntArrayProperty("SignalPeakPixelRange", [150, 160]),
"Pixel range defining the data peak")
self.declareProperty(IntArrayProperty("SignalBackgroundPixelRange", [147, 163]),
"Pixel range defining the background")
self.declareProperty(IntArrayProperty("LowResolutionPixelRange",
[Property.EMPTY_INT, Property.EMPTY_INT],
direction=Direction.Input),
"Pixel range defining the region to use in the low-resolution direction")
self.declareProperty("IncidentMedium", "Medium", doc="Name of the incident medium")
self.declareProperty("FrontSlitName", "S1", doc="Name of the front slit")
self.declareProperty("BackSlitName", "Si", doc="Name of the back slit")
self.declareProperty("TOFSteps", 500.0, doc="TOF step size")
self.declareProperty("SlitTolerance", 0.02, doc="Tolerance for matching slit positions")
self.declareProperty(FileProperty("ScalingFactorFile","",
action=FileAction.Save,
extensions=['cfg']))
#pylint: disable=too-many-locals,too-many-branches
def PyExec(self):
# Verify whether we have a sorted list of runs.
data_runs = self.getProperty("DirectBeamRuns").value
# We will be rejecting prompt pulses. We will store pulses here:
self.prompt_pulses = None
# Get a valid attenuator array
self.read_attenuators_property(len(data_runs))
peak_range = self.get_valid_pixel_range("SignalPeakPixelRange", len(data_runs))
background_range = self.get_valid_pixel_range("SignalBackgroundPixelRange", len(data_runs))
lowres_range = self.get_valid_pixel_range("LowResolutionPixelRange", len(data_runs))
# Slit information for the previous run (see loop below)
previous_slits = None
# Previous processed workspace
previous_ws = None
# Number of attenuators for the run being considered
n_attenuator = 0
# Transition sreferences used to propagate the attenuation
self.references = {}
# Current wavelength value
self.wavelength = None
self.wavelength_tolerance = 0.2
self.tolerance = self.getProperty("SlitTolerance").value
# Scaling factor output
# Run through the runs
for i in range(len(data_runs)):
run = data_runs[i]
workspace_name = "REF_L_%s" % int(run)
workspace = LoadEventNexus("REF_L_%s" % run,
OutputWorkspace = workspace_name)
# Get S1H, S2H, S1W, S2W
s1h, s1w, s2h, s2w = self.get_slit_settings(workspace)
# Get wavelength, to make sure they all match across runs
# Get attenuators
current_att = n_attenuator
n_attenuator = self.get_attenuators(workspace, i)
if current_att > n_attenuator:
raise RuntimeError("Runs were not supplied in increasing number of attenuators.")
self.process_data(workspace,
peak_range=[int(peak_range[2*i]), int(peak_range[2*i+1])],
background_range=[int(background_range[2*i]), int(background_range[2*i+1])],
low_res_range=[int(lowres_range[2*i]), int(lowres_range[2*i+1])])
is_reference = False
# Matching slits with the previous run signals a reference run
if i > 0 and previous_slits is not None \
and abs(previous_slits[0] - s1h) < self.tolerance \
and abs(previous_slits[1] - s1w) < self.tolerance \
and abs(previous_slits[2] - s2h) < self.tolerance \
and abs(previous_slits[3] - s2w) < self.tolerance:
previous_slits = [s1h, s1w, s2h, s2w]
# If the number of attenuators is zero, skip.
if n_attenuator == 0:
raise RuntimeError("More than one run with zero attenuator was supplied.")
'run': run,
'ref_ws': workspace_name,
'ratio_ws': None,
'diagnostics': str(run)}
previous_ws = workspace_name
continue
if is_reference is True:
self.references[n_attenuator] = {'index': i,
'run': run,
'ref_ws': workspace_name}
# Compute ratio of the run with fewer attenuators and the
# reference with the same number of attenuators as that run.
Divide(LHSWorkspace = previous_ws,
RHSWorkspace = self.references[n_attenuator-1]['ref_ws'],
OutputWorkspace = "ScalingRatio_%s" % n_attenuator)
self.references[n_attenuator]['diagnostics'] = "%s / %s" % (str(data_runs[i-1]), self.references[n_attenuator-1]['run'])
# Multiply the result by the ratio for that run, and store
if self.references[n_attenuator-1]['ratio_ws'] is not None:
Multiply(LHSWorkspace = self.references[n_attenuator-1]['ratio_ws'],
RHSWorkspace = "ScalingRatio_%s" % n_attenuator,
OutputWorkspace = "ScalingRatio_%s" % n_attenuator)
self.references[n_attenuator]['diagnostics'] += " * %s" % self.references[n_attenuator-1]['diagnostics']
self.references[n_attenuator]['ratio_ws'] = "ScalingRatio_%s" % n_attenuator
# If this is not a reference run, compute F
else:
self.compute_scaling_factor(run, n_attenuator, workspace_name)
previous_ws = workspace_name
# Log some useful information to track what happened
log_info = "LambdaRequested=%s " % item["LambdaRequested"]
log_info += "S1H=%s " % item["S1H"]
log_info += "S2iH=%s " % item["S2iH"]
log_info += "S1W=%s " % item["S1W"]
log_info += "S2iW=%s " % item["S2iW"]
log_info += "a=%s " % item["a"]
log_info += "b=%s " % item["b"]
log_info += " | %s" % item["diagnostics"]
logger.information(log_info)
# Save the output in a configuration file
self.save_scaling_factor_file()
def validate_wavelength(self, workspace):
"""
All supplied runs should have the same wavelength band.
Verify that it is the case or raise an exception.
@param workspace: data set we are checking
"""
# Get the wavelength for the workspace being considered
wl = workspace.getRun().getProperty('LambdaRequest').value[0]
# If this is the first workspace we process, set the our
# internal reference value to be used with the following runs.
if self.wavelength is None:
self.wavelength = wl
# Check that the wavelength is the same as our reference within tolerence.
elif abs(wl-self.wavelength) > self.wavelength_tolerance:
raise RuntimeError("Supplied runs don't have matching wavelengths.")
def read_attenuators_property(self, number_of_runs):
"""
Return the number of attenuators for each run as an array.
Check whether the supplied attenuation array is of the same length,
otherwise we will read the number of attenuators from the logs.
@param number_of_runs: number of runs we are processing
"""
self.attenuators = self.getProperty("Attenuators").value
self.have_attenuator_info = False
if len(self.attenuators)==0:
logger.notice("No attenuator information supplied: will be determined.")
elif not len(self.attenuators) == number_of_runs:
logger.error("Attenuation list should be of the same length as the list of runs")
else:
self.have_attenuator_info = True
def get_attenuators(self, workspace, run_index):
"""
@param workspace: workspace we are determining the number of attenuators for
@param run_index: index of the run in case we are getting the attenuators from the input properties
"""
if self.have_attenuator_info:
return self.attenuators[run_index]
else:
return int(workspace.getRun().getProperty('vAtt').value[0]-1)
def get_valid_pixel_range(self, property_name, number_of_runs):
"""
Return a valid pixel range we can use in our calculations.
The output is a list of length 2*number_of_runs.
@param property_name: name of the algorithm property specifying a pixel range
@param number_of_runs: number of runs we are processing
"""
pixel_range = self.getProperty(property_name).value
if len(pixel_range)==2:
x_min = int(pixel_range[0])
x_max = int(pixel_range[1])
pixel_range = 2*number_of_runs*[0]
for i in range(number_of_runs):
pixel_range[2*i] = x_min
pixel_range[2*i+1] = x_max
elif len(pixel_range) < 2:
raise RuntimeError("%s should have a length of at least 2." % property_name)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Check that the peak range arrays are of the proper length
if not len(pixel_range) == 2*number_of_runs:
raise RuntimeError("Supplied peak/background arrays should be of the same length as the run array.")
return pixel_range
def get_slit_settings(self, workspace):
"""
Return the slit settings
@param workspace: workspace to get the information from
"""
# Get the slit information
front_slit = self.getProperty("FrontSlitName").value
back_slit = self.getProperty("BackSlitName").value
# Get S1H, S2H, S1W, S2W
s1h = abs(workspace.getRun().getProperty("%sVHeight" % front_slit).value[0])
s1w = abs(workspace.getRun().getProperty("%sHWidth" % front_slit).value[0])
try:
s2h = abs(workspace.getRun().getProperty("%sVHeight" % back_slit).value[0])
s2w = abs(workspace.getRun().getProperty("%sHWidth" % back_slit).value[0])
except RuntimeError:
# For backward compatibility with old code
logger.error("Specified slit could not be found: %s Trying S2" % back_slit)
s2h = abs(workspace.getRun().getProperty("S2VHeight").value[0])
s2w = abs(workspace.getRun().getProperty("S2HWidth").value[0])
return s1h, s1w, s2h, s2w
def compute_scaling_factor(self, run, n_attenuator, workspace_name):
"""
Compute the scaling factor for this run.
@param run: run number we are working with
@param n_attenuator: number of attenuators for this run
@param workspace_name: name of processed workspace
"""
# Divide by the reference for this number of attenuators
# and multiply by the reference ratio
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
raise RuntimeError("No reference for %s attenuators: check run ordering." % n_attenuator)
f_ws = "F_%s_%s" % (run, n_attenuator)
Divide(LHSWorkspace=workspace_name,
RHSWorkspace=self.references[n_attenuator]['ref_ws'],
OutputWorkspace=f_ws)
Multiply(LHSWorkspace=self.references[n_attenuator]['ratio_ws'],
RHSWorkspace=f_ws,
OutputWorkspace=f_ws)
# Store the final result for this setting
ReplaceSpecialValues(InputWorkspace=f_ws, OutputWorkspace=f_ws,
NaNValue=0.0, NaNError=1000.0,
InfinityValue=0.0, InfinityError=1000.0)
# Remove prompt pulse bin, replace the y value by the
# average and give it a very large error.
x_values = mtd[f_ws].readX(0)
y_values = mtd[f_ws].dataY(0)
e_values = mtd[f_ws].dataE(0)
# We will create a cleaned up workspace without the bins
# corresponding to the prompt pulses
x_clean = []
y_clean = []
e_clean = []
for i in range(len(y_values)):
has_prompt_pulse = self.is_prompt_pulse_in_range(mtd[f_ws], x_values[i], x_values[i+1])
if has_prompt_pulse:
logger.notice("Prompt pulse bin [%g, %g]" % (x_values[i], x_values[i+1]))
elif y_values[i] > 0.0:
x_clean.append((x_values[i+1]+x_values[i])/2.0)
y_clean.append(y_values[i])
e_clean.append(e_values[i])
CreateWorkspace(OutputWorkspace=f_ws, DataX=x_clean,
DataY=y_clean, DataE=e_clean, NSpec=1)
Fit(InputWorkspace=f_ws,
Function="name=UserFunction, Formula=a+b*x, a=1, b=0",
Output='fit_result')
a = mtd['fit_result_Parameters'].cell(0,1)
b = mtd['fit_result_Parameters'].cell(1,1)
error_a = mtd['fit_result_Parameters'].cell(0,2)
error_b = mtd['fit_result_Parameters'].cell(1,2)
medium = self.getProperty("IncidentMedium").value
wl = mtd[workspace_name].getRun().getProperty('LambdaRequest').value[0]
s1h, s1w, s2h, s2w = self.get_slit_settings(mtd[workspace_name])
self.scaling_factors.append({'IncidentMedium': medium,
'LambdaRequested': wl,
'S1H':s1h, 'S1W':s1w,
'S2iH':s2h, 'S2iW':s2w,
'a':a, 'error_a': error_a,
'b':b, 'error_b': error_b,
'diagnostics': '%s / %s * %s' % (run, self.references[n_attenuator]['run'],
self.references[n_attenuator]['diagnostics'])})
def is_prompt_pulse_in_range(self, workspace, x_min, x_max):
"""
Returns True if a prompt pulse is in the given TOF range
@param workspace: a data workspace to get the frequency from
@param x_min: min TOF value
@param x_max: max TOD value
"""
# Initialize the prompt pulses if it hasn't been done
if self.prompt_pulses is None:
# Accelerator rep rate
# Use max here because the first entry can be zero
frequency = max(workspace.getRun().getProperty('frequency').value)
# Go up to 4 frames - that should cover more than enough TOF
self.prompt_pulses = [1.0e6 / frequency * i for i in range(4)]
for peak_x in self.prompt_pulses:
if peak_x > x_min and peak_x < x_max:
return True
return False
"""
Save the output. First see if the scaling factor file exists.
If it does, we need to update it.
"""
scaling_file = self.getPropertyValue("ScalingFactorFile")
# Extend the existing content of the scaling factor file
scaling_file_content, scaling_file_meta = self.read_scaling_factor_file(scaling_file)
scaling_file_content.extend(self.scaling_factors)
direct_beams = list(self.getProperty("DirectBeamRuns").value)
medium = self.getProperty("IncidentMedium").value
scaling_file_meta[medium] = "# Medium=%s, runs: %s" % (medium, direct_beams)
fd.write("# y=a+bx\n#\n")
fd.write("# LambdaRequested[Angstroms] S1H[mm] (S2/Si)H[mm] S1W[mm] (S2/Si)W[mm] a b error_a error_b\n#\n")
for k, v in iteritems(scaling_file_meta):
for item in scaling_file_content:
fd.write("IncidentMedium=%s " % item["IncidentMedium"])
fd.write("LambdaRequested=%s " % item["LambdaRequested"])
fd.write("S1H=%s " % item["S1H"])
fd.write("S2iH=%s " % item["S2iH"])
fd.write("S1W=%s " % item["S1W"])
fd.write("S2iW=%s " % item["S2iW"])
fd.write("a=%s " % item["a"])
fd.write("b=%s " % item["b"])
fd.write("error_a=%s " % item["error_a"])
fd.write("error_b=%s\n" % item["error_b"])
fd.close()
def read_scaling_factor_file(self, scaling_file):
"""
Read in a scaling factor file and return its content as a list of entries
@param scaling_file: path of the scaling factor file to read
"""
scaling_file_content = []
if os.path.isfile(scaling_file):
fd = open(scaling_file, 'r')
content = fd.read()
fd.close()
for line in content.split('\n'):
if line.startswith('# Medium='):
m=re.search('# Medium=(.+), runs', line)
if m is not None:
scaling_file_meta[m.group(1)] = line
continue
elif line.startswith('#') or len(line.strip()) == 0:
continue
toks = line.split()
entry = {}
for token in toks:
pair = token.split('=')
entry[pair[0].strip()] = pair[1].strip()
# If we are about to update an entry, don't include it in the new file
add_this_entry = True
is_matching = entry["IncidentMedium"] == new_entry["IncidentMedium"]
for slit in ["LambdaRequested", "S1H", "S1W", "S2iH", "S2iW"]:
is_matching = is_matching \
and abs(float(entry[slit])-float(new_entry[slit])) < self.tolerance
if is_matching:
add_this_entry = False
if add_this_entry:
scaling_file_content.append(entry)
return scaling_file_content, scaling_file_meta
def process_data(self, workspace, peak_range, background_range, low_res_range):
"""
Common processing for both sample data and normalization.
@param workspace: name of the workspace to work with
@param peak_range: range of pixels defining the peak
@param background_range: range of pixels defining the background
@param low_res_range: range of pixels in the x-direction
# Check low-res axis
if low_res_range[0] == Property.EMPTY_INT:
low_res_range[0] = 0
if low_res_range[1] == Property.EMPTY_INT:
low_res_range[1] = int(workspace.getInstrument().getNumberParameter("number-of-x-pixels")[0])-1
# Rebin TOF axis
tof_range = self.getProperty("TOFRange").value
tof_step = self.getProperty("TOFSteps").value
workspace = Rebin(InputWorkspace=workspace, Params=[tof_range[0], tof_step, tof_range[1]],
PreserveEvents=False, OutputWorkspace=str(workspace))
# Subtract background
workspace = LRSubtractAverageBackground(InputWorkspace=workspace,
PeakRange=peak_range,
BackgroundRange=background_range,
OutputWorkspace=str(workspace))
# Normalize by current proton charge
# Note that the background subtraction will use an error weighted mean
# and use 1 as the error on counts of zero. We normalize by the integrated
# current _after_ the background subtraction so that the 1 doesn't have
# to be changed to a 1/Charge.
workspace = NormaliseByCurrent(InputWorkspace=workspace,
OutputWorkspace=str(workspace))
# Crop to only the selected peak region
workspace = CropWorkspace(InputWorkspace=workspace,
StartWorkspaceIndex=int(peak_range[0]),
EndWorkspaceIndex=int(peak_range[1]),
OutputWorkspace=str(workspace))
workspace = SumSpectra(InputWorkspace=workspace,
OutputWorkspace=str(workspace))
return str(workspace)
AlgorithmFactory.subscribe(LRScalingFactors)