Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#include "MantidAlgorithms/CalculatePolynomialBackground.h"
#include "MantidAPI/BasicJacobian.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IFunction1D.h"
#include "MantidAPI/IncreasingAxisValidator.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidDataObjects/WorkspaceCreation.h"
#include "MantidKernel/ArrayOrderedPairsValidator.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include <utility>
namespace {
namespace Prop {
constexpr char *INPUT_WS = "InputWorkspace";
constexpr char *OUTPUT_WS = "OutputWorkspace";
constexpr char *POLY_ORDER = "PolynomeOrder";
constexpr char *XRANGES = "XRanges";
}
std::vector<double> invertRanges(const std::vector<double> &ranges) {
std::vector<double> inversion(ranges.size() - 2);
for (size_t i = 1; i < ranges.size() - 1; ++i) {
inversion[i - 1] = ranges[i];
}
return inversion;
}
std::string makeFunctionString(const std::vector<double> ¶meters) {
const auto order = parameters.size() - 1;
std::ostringstream s;
switch (order) {
case 0:
s << "name=FlatBackground";
break;
case 1:
s << "name=LinearBackground";
break;
case 2:
s << "name=Quadratic";
break;
default:
s << "name=Polynomial,n=" << order;
}
for (size_t o = 0; o <= order; ++o) {
s << ',' << 'A' << o << '=' << parameters[o];
}
return s.str();
}
}
namespace Mantid {
namespace Algorithms {
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(CalculatePolynomialBackground)
//----------------------------------------------------------------------------------------------
/// Algorithms name for identification. @see Algorithm::name
const std::string CalculatePolynomialBackground::name() const { return "CalculatePolynomialBackground"; }
/// Algorithm's version for identification. @see Algorithm::version
int CalculatePolynomialBackground::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string CalculatePolynomialBackground::category() const {
return "CorrectionFunctions\\BackgroundCorrections";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string CalculatePolynomialBackground::summary() const {
return "Fits a polynomial background to a workspace.";
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void CalculatePolynomialBackground::init() {
auto increasingAxis = boost::make_shared<API::IncreasingAxisValidator>();
auto nonnegativeInt = boost::make_shared<Kernel::BoundedValidator<int>>();
nonnegativeInt->setLower(0);
auto orderedPairs = boost::make_shared<Kernel::ArrayOrderedPairsValidator<double>>();
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<API::MatrixWorkspace>>(Prop::INPUT_WS, "",
Kernel::Direction::Input, increasingAxis),
"An input workspace.");
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<API::MatrixWorkspace>>(Prop::OUTPUT_WS, "",
Kernel::Direction::Output),
"A workspace containing the fitted background.");
declareProperty(Prop::POLY_ORDER, 0, nonnegativeInt, "Order of the polynome to fit to the input workspace.");
declareProperty(Kernel::make_unique<Kernel::ArrayProperty<double>>(Prop::XRANGES, std::vector<double>(), orderedPairs), "A list of fitting ranges given as pairs of X values.");
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void CalculatePolynomialBackground::exec() {
API::MatrixWorkspace_sptr inWS = getProperty(Prop::INPUT_WS);
API::MatrixWorkspace_sptr outWS{DataObjects::create<DataObjects::Workspace2D>(*inWS)};
const auto polyOrder = static_cast<size_t>(static_cast<int>(getProperty(Prop::POLY_ORDER)));
const std::vector<double> initialParams(polyOrder + 1, 0.1);
const auto fitFunction = makeFunctionString(initialParams);
const auto nHistograms = static_cast<int64_t>(inWS->getNumberHistograms());
const auto nBins = inWS->blocksize();
for (int64_t i = 0; i < nHistograms; ++i) {
const auto includedR = includedRanges(totalRange(*inWS, i));
const bool logging{false};
auto fit = createChildAlgorithm("Fit", 0, 0, logging);
fit->setProperty("Function", fitFunction);
fit->setProperty("InputWorkspace", inWS);
fit->setProperty("WorkspaceIndex", static_cast<int>(i));
fit->setProperty("StartX", includedR.front());
fit->setProperty("EndX", includedR.back());
fit->setProperty("Exclude", invertRanges(includedR));
fit->setProperty("CreateOutput", true);
fit->executeAsChildAlg();
API::ITableWorkspace_sptr fitResult = fit->getProperty("OutputParameters");
std::vector<double> parameters(polyOrder + 1);
std::vector<double> paramErrors(polyOrder + 1);
for (size_t row = 0; row < parameters.size(); ++row) {
parameters[row] = fitResult->cell<double>(row, 1);
paramErrors[row] = fitResult->cell<double>(row, 2);
}
const auto bkgFunction = makeFunctionString(parameters);
auto bkg = boost::dynamic_pointer_cast<API::IFunction1D>(API::FunctionFactory::Instance().createInitialized(bkgFunction));
// We want bkg to directly write to the output workspace.
double *bkgY = const_cast<double *>(outWS->mutableY(i).rawData().data());
bkg->function1D(bkgY, outWS->points(i).rawData().data(), nBins);
API::BasicJacobian jacobian{nBins, polyOrder + 1};
bkg->functionDeriv1D(&jacobian, outWS->points(i).rawData().data(), nBins);
for (size_t j = 0; j < nBins; ++j) {
double uncertainty{0.0};
for (size_t k = 0; k < paramErrors.size(); ++k) {
uncertainty += std::abs(jacobian.get(j, k)) * paramErrors[k];
}
outWS->mutableE(i)[j] = uncertainty;
}
}
setProperty(Prop::OUTPUT_WS, outWS);
}
std::pair<double, double> CalculatePolynomialBackground::totalRange(API::MatrixWorkspace &ws, const size_t wsIndex) const {
const std::vector<double> ranges = getProperty(Prop::XRANGES);
const auto minmaxIt = std::minmax_element(ranges.cbegin(), ranges.cend());
const auto minEdge = *minmaxIt.first;
const auto maxEdge = *minmaxIt.second;
const auto minX = ws.x(wsIndex).front();
const auto maxX = ws.x(wsIndex).back();
return std::pair<double, double>(std::min(minEdge, minX), std::max(maxEdge, maxX));
}
std::vector<double> CalculatePolynomialBackground::includedRanges(const std::pair<double, double> &totalRange) const {
std::vector<double> ranges = getProperty(Prop::XRANGES);
// Sort the range edges keeping the information whether the edge
// 'starts' or 'ends' a range.
enum class Edge { start, end };
std::vector<std::pair<double, Edge>> edges(ranges.size());
for (size_t i = 0; i < ranges.size(); ++i) {
edges[i].first = ranges[i];
edges[i].second = i % 2 == 0 ? Edge::start : Edge::end;
}
std::sort(edges.begin(), edges.end(), [](const std::pair<double, Edge> &p1, const std::pair<double, Edge> &p2) {
if (p1.first == p2.first)
return p1.second == Edge::start;
return p1.first < p2.first;
});
// If an 'end' edge is followed by a 'start', we have a new range. Everything else
// can be merged.
std::vector<double> mergedRanges;
mergedRanges.reserve(ranges.size());
auto edgeIt = edges.begin();
mergedRanges.emplace_back(std::max(edges.front().first, totalRange.first));
while (edgeIt != edges.end()) {
auto endEdgeIt = edgeIt + 1;
while (endEdgeIt != edges.end()) {
const auto val = *endEdgeIt;
const auto prevVal = *(endEdgeIt - 1);
if (val.second == Edge::start && prevVal.second == Edge::end) {
mergedRanges.emplace_back(prevVal.first);
mergedRanges.emplace_back(val.first);
edgeIt = endEdgeIt;
break;
}
++endEdgeIt;
}
++edgeIt;
}
mergedRanges.emplace_back(std::min(edges.back().first, totalRange.second));
return mergedRanges;
}
} // namespace Algorithms
} // namespace Mantid