Newer
Older
#ifndef MANTID_ALGORITHMS_REFLECTOMETRYMOMENTUMTRANSFERTEST_H_
#define MANTID_ALGORITHMS_REFLECTOMETRYMOMENTUMTRANSFERTEST_H_
#include <cxxtest/TestSuite.h>
#include "MantidAlgorithms/ReflectometryMomentumTransfer.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/Axis.h"
#include "MantidAPI/FrameworkManager.h"
#include "MantidAPI/SpectrumInfo.h"
#include "MantidKernel/Unit.h"
#include "MantidTestHelpers/WorkspaceCreationHelper.h"
#include <boost/math/special_functions/pow.hpp>
using namespace Mantid;
namespace {
constexpr double CHOPPER_GAP{0.23};
constexpr double CHOPPER_OPENING_ANGLE{33.}; // degrees
constexpr double CHOPPER_RADIUS{0.3};
constexpr double CHOPPER_SPEED{990.};
constexpr double DET_DIST{4.};
constexpr double DET_RESOLUTION{0.002};
constexpr double L1{8.};
constexpr double PIXEL_SIZE{0.0015};
// h / NeutronMass
constexpr double PLANCK_PER_KG{3.9560340102631226e-7};
constexpr double SLIT1_SIZE{0.03};
constexpr double SLIT1_DIST{1.2};
constexpr double SLIT2_DIST{0.3};
constexpr double SLIT2_SIZE{0.02};
constexpr double TOF_BIN_WIDTH{70.}; // microseconds
} // namespace
class ReflectometryMomentumTransferTest : public CxxTest::TestSuite {
public:
// This pair of boilerplate methods prevent the suite being created statically
// This means the constructor isn't called when running other tests
static ReflectometryMomentumTransferTest *createSuite() {
return new ReflectometryMomentumTransferTest();
}
static void destroySuite(ReflectometryMomentumTransferTest *suite) {
delete suite;
ReflectometryMomentumTransferTest() { API::FrameworkManager::Instance(); }
void test_Init() {
Algorithms::ReflectometryMomentumTransfer alg;
alg.setRethrows(true);
TS_ASSERT_THROWS_NOTHING(alg.initialize())
TS_ASSERT(alg.isInitialized())
}
void test_XYEFromInputUnchangedAndMonitorDXSetToZero() {
auto inputWS = make_ws(0.5 / 180. * M_PI);
API::MatrixWorkspace_sptr directWS = inputWS->clone();
auto alg = make_alg(inputWS, directWS, "SumInLambda", false);
TS_ASSERT_THROWS_NOTHING(alg->execute();)
TS_ASSERT(alg->isExecuted())
API::MatrixWorkspace_sptr outputWS = alg->getProperty("OutputWorkspace");
TS_ASSERT(outputWS);
const auto axis = outputWS->getAxis(0);
TS_ASSERT_EQUALS(axis->unit()->unitID(), "MomentumTransfer")
TS_ASSERT_EQUALS(outputWS->getNumberHistograms(),
inputWS->getNumberHistograms())
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
for (size_t i = 0; i < outputWS->getNumberHistograms(); ++i) {
const auto &inXs = inputWS->x(i);
const auto &outXs = outputWS->x(i);
TS_ASSERT_EQUALS(outXs.size(), inXs.size())
TS_ASSERT(outputWS->hasDx(i))
if (i == 1) {
// Monitor should have Dx = 0
TS_ASSERT(outputWS->spectrumInfo().isMonitor(i))
const auto &outDx = outputWS->dx(i);
for (size_t j = 0; j < outDx.size(); ++j) {
TS_ASSERT_EQUALS(outDx[j], 0.)
}
}
const auto &inYs = inputWS->y(i);
const auto &outYs = outputWS->y(i);
TS_ASSERT_EQUALS(outYs.rawData(), inYs.rawData())
const auto &inEs = inputWS->e(i);
const auto &outEs = outputWS->e(i);
TS_ASSERT_EQUALS(outEs.rawData(), inEs.rawData())
}
}
void test_nonpolarizedSumInLambdaResultsAreValid() {
const bool polarized(false);
const std::string sumType{"SumInLambda"};
sameReflectedAndDirectSlitSizes(polarized, sumType);
}
void test_polarizedSumInLambdaResultsAreValid() {
const bool polarized(true);
const std::string sumType{"SumInLambda"};
sameReflectedAndDirectSlitSizes(polarized, sumType);
}
void test_nonpolarizedSumInQResultsAreValid() {
const bool polarized(false);
const std::string sumType{"SumInQ"};
sameReflectedAndDirectSlitSizes(polarized, sumType);
}
void test_polarizedSumInQResultsAreValid() {
const bool polarized(true);
const std::string sumType{"SumInQ"};
sameReflectedAndDirectSlitSizes(polarized, sumType);
}
void test_differentReflectedAndDirectSlitSizes() {
using namespace boost::math;
const bool polarized{false};
const std::string sumType{"SumInLambda"};
auto inputWS = make_ws(0.5 / 180. * M_PI);
inputWS->mutableY(0) = 1. / static_cast<double>(inputWS->y(0).size());
API::MatrixWorkspace_sptr directWS = inputWS->clone();
auto &run = directWS->mutableRun();
constexpr bool overwrite{true};
const std::string meters{"m"};
run.addProperty("slit1.size", 1.5 * SLIT1_SIZE, meters, overwrite);
run.addProperty("slit2.size", 1.5 * SLIT2_SIZE, meters, overwrite);
auto alg = make_alg(inputWS, directWS, sumType, polarized);
TS_ASSERT_THROWS_NOTHING(alg->execute();)
TS_ASSERT(alg->isExecuted())
API::MatrixWorkspace_sptr outputWS = alg->getProperty("OutputWorkspace");
TS_ASSERT(outputWS);
alg = API::AlgorithmManager::Instance().createUnmanaged("ConvertUnits");
alg->initialize();
alg->setChild(true);
alg->setRethrows(true);
alg->setProperty("InputWorkspace", inputWS);
alg->setProperty("OutputWorkspace", "unused_for_child");
alg->setProperty("Target", "MomentumTransfer");
alg->execute();
API::MatrixWorkspace_sptr qWS = alg->getProperty("OutputWorkspace");
const auto axis = outputWS->getAxis(0);
TS_ASSERT_EQUALS(axis->unit()->unitID(), "MomentumTransfer")
TS_ASSERT_EQUALS(outputWS->getNumberHistograms(),
inputWS->getNumberHistograms())
const auto &spectrumInfo = outputWS->spectrumInfo();
const auto &dirSpectrumInfo = directWS->spectrumInfo();
for (size_t i = 0; i < outputWS->getNumberHistograms(); ++i) {
const auto &inQs = qWS->points(i);
const auto &outPoints = outputWS->points(i);
TS_ASSERT_EQUALS(outPoints.size(), inQs.size())
TS_ASSERT(outputWS->hasDx(i))
if (i != 1) {
TS_ASSERT(!outputWS->spectrumInfo().isMonitor(i))
const auto &outDx = outputWS->dx(i);
TS_ASSERT_EQUALS(outDx.size(), inQs.size())
const auto &lambdas = inputWS->points(i);
const auto l2 = spectrumInfo.l2(i);
const auto dirL2 = dirSpectrumInfo.l2(i);
const auto angle_bragg = spectrumInfo.twoTheta(i) / 2.;
for (size_t j = 0; j < lambdas.size(); ++j) {
const auto lambda = lambdas[j] * 1e-10;
const size_t qIndex = inQs.size() - j - 1;
const auto q = inQs[qIndex];
const auto resE = std::sqrt(pow<2>(err_res(lambda, l2)) +
pow<2>(width_res(lambda, l2)));
const auto detFwhm = det_fwhm(*inputWS, 0, 0);
const auto dirDetFwhm = det_fwhm(*directWS, 0, 0);
const auto omFwhm =
om_fwhm(l2, dirL2, SLIT1_SIZE, SLIT2_SIZE, detFwhm, dirDetFwhm);
const auto rayE =
err_ray(l2, angle_bragg, sumType, polarized, omFwhm);
const auto fractionalResolution =
std::sqrt(pow<2>(resE) + pow<2>(rayE));
TS_ASSERT_EQUALS(outPoints[qIndex], q)
TS_ASSERT_DELTA(outDx[qIndex], q * fractionalResolution, 1e-7)
}
} else {
// Monitor should have Dx = 0
TS_ASSERT(outputWS->spectrumInfo().isMonitor(i))
const auto &outDx = outputWS->dx(i);
for (size_t j = 0; j < outDx.size(); ++j) {
TS_ASSERT_EQUALS(outDx[j], 0.)
}
}
}
}
private:
void sameReflectedAndDirectSlitSizes(const bool polarized,
const std::string &sumType) {
using namespace boost::math;
auto inputWS = make_ws(0.5 / 180. * M_PI);
inputWS->mutableY(0) = 1. / static_cast<double>(inputWS->y(0).size());
API::MatrixWorkspace_sptr directWS = inputWS->clone();
auto &run = directWS->mutableRun();
constexpr bool overwrite{true};
const std::string meters{"m"};
run.addProperty("slit1.size", SLIT1_SIZE, meters, overwrite);
run.addProperty("slit2.size", SLIT2_SIZE, meters, overwrite);
auto alg = make_alg(inputWS, directWS, sumType, polarized);
TS_ASSERT_THROWS_NOTHING(alg->execute();)
TS_ASSERT(alg->isExecuted())
API::MatrixWorkspace_sptr outputWS = alg->getProperty("OutputWorkspace");
TS_ASSERT(outputWS);
alg = API::AlgorithmManager::Instance().createUnmanaged("ConvertUnits");
alg->initialize();
alg->setChild(true);
alg->setRethrows(true);
alg->setProperty("InputWorkspace", inputWS);
alg->setProperty("OutputWorkspace", "unused_for_child");
alg->setProperty("Target", "MomentumTransfer");
alg->execute();
API::MatrixWorkspace_sptr qWS = alg->getProperty("OutputWorkspace");
const auto axis = outputWS->getAxis(0);
TS_ASSERT_EQUALS(axis->unit()->unitID(), "MomentumTransfer")
TS_ASSERT_EQUALS(outputWS->getNumberHistograms(),
inputWS->getNumberHistograms())
const auto &spectrumInfo = outputWS->spectrumInfo();
const auto &dirSpectrumInfo = directWS->spectrumInfo();
for (size_t i = 0; i < outputWS->getNumberHistograms(); ++i) {
const auto &inQs = qWS->points(i);
const auto &outPoints = outputWS->points(i);
TS_ASSERT_EQUALS(outPoints.size(), inQs.size())
TS_ASSERT(outputWS->hasDx(i))
if (i != 1) {
TS_ASSERT(!outputWS->spectrumInfo().isMonitor(i))
const auto &outDx = outputWS->dx(i);
TS_ASSERT_EQUALS(outDx.size(), inQs.size())
const auto &lambdas = inputWS->points(i);
const auto l2 = spectrumInfo.l2(i);
const auto dirL2 = dirSpectrumInfo.l2(i);
const auto angle_bragg = spectrumInfo.twoTheta(i) / 2.;
for (size_t j = 0; j < lambdas.size(); ++j) {
const auto lambda = lambdas[j] * 1e-10;
const size_t qIndex = inQs.size() - j - 1;
const auto q = inQs[qIndex];
const auto resE = std::sqrt(pow<2>(err_res(lambda, l2)) +
pow<2>(width_res(lambda, l2)));
const auto detFwhm = det_fwhm(*inputWS, 0, 0);
const auto dirDetFwhm = det_fwhm(*directWS, 0, 0);
const auto omFwhm =
om_fwhm(l2, dirL2, SLIT1_SIZE, SLIT2_SIZE, detFwhm, dirDetFwhm);
const auto rayE =
err_ray(l2, angle_bragg, sumType, polarized, omFwhm);
const auto fractionalResolution =
std::sqrt(pow<2>(resE) + pow<2>(rayE));
TS_ASSERT_EQUALS(outPoints[qIndex], q)
TS_ASSERT_DELTA(outDx[qIndex], q * fractionalResolution, 1e-7)
}
} else {
// Monitor should have Dx = 0
TS_ASSERT(outputWS->spectrumInfo().isMonitor(i))
const auto &outDx = outputWS->dx(i);
for (size_t j = 0; j < outDx.size(); ++j) {
TS_ASSERT_EQUALS(outDx[j], 0.)
}
}
}
}
API::Algorithm_sptr make_alg(API::MatrixWorkspace_sptr inputWS,
API::MatrixWorkspace_sptr directWS,
const std::string &sumType,
const bool polarized) {
std::vector<int> foreground(2);
foreground.front() = 0;
foreground.back() = 0;
auto alg = boost::make_shared<Algorithms::ReflectometryMomentumTransfer>();
alg->setChild(true);
alg->setRethrows(true);
TS_ASSERT_THROWS_NOTHING(alg->initialize())
TS_ASSERT(alg->isInitialized())
TS_ASSERT_THROWS_NOTHING(alg->setProperty("InputWorkspace", inputWS))
TS_ASSERT_THROWS_NOTHING(
alg->setPropertyValue("OutputWorkspace", "_unused_for_child"))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("ReflectedBeamWorkspace", inputWS))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("ReflectedForeground", foreground))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("DirectBeamWorkspace", directWS))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("DirectForeground", foreground))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("SummationType", sumType))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("Polarized", polarized))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("PixelSize", PIXEL_SIZE))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("DetectorResolution", DET_RESOLUTION))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("ChopperSpeed", CHOPPER_SPEED))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("ChopperOpening", CHOPPER_OPENING_ANGLE))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("ChopperRadius", CHOPPER_RADIUS))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("ChopperpairDistance", CHOPPER_GAP))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("Slit1Name", "slit1"))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("Slit1SizeSampleLog", "slit1.size"))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("Slit2Name", "slit2"))
TS_ASSERT_THROWS_NOTHING(
alg->setProperty("Slit2SizeSampleLog", "slit2.size"))
TS_ASSERT_THROWS_NOTHING(alg->setProperty("TOFChannelWidth", TOF_BIN_WIDTH))
return alg;
}
API::MatrixWorkspace_sptr make_ws(const double braggAngle) {
using namespace WorkspaceCreationHelper;
constexpr double startX{1000.};
const Kernel::V3D sourcePos{0., 0., -L1};
const Kernel::V3D &monitorPos = sourcePos;
const Kernel::V3D samplePos{
const auto detZ = DET_DIST * std::cos(2 * braggAngle);
const auto detY = DET_DIST * std::sin(2 * braggAngle);
const Kernel::V3D detectorPos{0., detY, detZ};
const Kernel::V3D slit1Pos{0., 0., -SLIT1_DIST};
const Kernel::V3D slit2Pos{0., 0., -SLIT2_DIST};
constexpr int nHisto{2};
constexpr int nBins{100};
auto ws = create2DWorkspaceWithReflectometryInstrument(
startX, slit1Pos, slit2Pos, SLIT1_SIZE, SLIT2_SIZE, sourcePos,
monitorPos, samplePos, detectorPos, nHisto, nBins, TOF_BIN_WIDTH);
// Add slit sizes to sample logs, too.
auto &run = ws->mutableRun();
constexpr bool overwrite{true};
const std::string meters{"m"};
run.addProperty("slit1.size", SLIT1_SIZE, meters, overwrite);
run.addProperty("slit2.size", SLIT2_SIZE, meters, overwrite);
auto alg =
API::AlgorithmManager::Instance().createUnmanaged("ConvertUnits");
alg->initialize();
alg->setChild(true);
alg->setRethrows(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", "_unused_for_child");
alg->setProperty("Target", "Wavelength");
alg->setProperty("EMode", "Elastic");
alg->execute();
return alg->getProperty("OutputWorkspace");
}
double det_fwhm(const API::MatrixWorkspace &ws, const size_t fgd_first,
const size_t fgd_last) {
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
using namespace boost::math;
std::vector<double> angd;
const auto &spectrumInfo = ws.spectrumInfo();
for (size_t i = fgd_first; i <= fgd_last; ++i) {
if (spectrumInfo.isMonitor(i)) {
continue;
}
const auto &ys = ws.y(i);
const auto sum = std::accumulate(ys.cbegin(), ys.cend(), 0.0);
angd.emplace_back(sum);
}
const auto temp = [&angd]() {
double sum{0.0};
for (size_t i = 0; i < angd.size(); ++i) {
sum += static_cast<double>(i) * angd[i];
}
return sum;
}();
const auto total_angd = std::accumulate(angd.cbegin(), angd.cend(), 0.0);
const auto pref = temp / total_angd + static_cast<double>(fgd_first);
const auto angd_cen = pref - static_cast<double>(fgd_first);
const auto tt = [&angd, &angd_cen]() {
double sum{0.0};
for (size_t i = 0; i < angd.size(); ++i) {
sum += angd[i] * pow<2>(angd_cen - static_cast<double>(i));
}
return sum;
}();
return 2. * std::sqrt(2. * std::log(2.)) * PIXEL_SIZE *
std::sqrt(tt / total_angd);
double err_ray(const double l2, const double angle_bragg,
const std::string &sumType, const bool polarized,
const double om_fwhm) {
using namespace boost::math;
const auto interslit = SLIT1_DIST - SLIT2_DIST;
const auto da = 0.68 * std::sqrt((pow<2>(SLIT1_SIZE) + pow<2>(SLIT2_SIZE)) /
pow<2>(interslit));
const auto s2_fwhm = (0.68 * SLIT1_SIZE) / interslit;
const auto s3_fwhm = (0.68 * SLIT2_SIZE) / (SLIT2_DIST + l2);
double err_ray1;
if (sumType == "SumInQ") {
if (om_fwhm > 0) {
if (s2_fwhm >= 2 * om_fwhm) {
err_ray1 = std::sqrt(pow<2>(DET_RESOLUTION / l2) + pow<2>(s3_fwhm) +
pow<2>(om_fwhm)) /
angle_bragg;
err_ray1 = std::sqrt(pow<2>(DET_RESOLUTION / (2. * l2)) +
pow<2>(s3_fwhm) + pow<2>(s2_fwhm)) /
angle_bragg;
}
} else {
if (s2_fwhm > DET_RESOLUTION / l2) {
err_ray1 = std::sqrt(pow<2>(DET_RESOLUTION / l2) + pow<2>(s3_fwhm)) /
angle_bragg;
err_ray1 =
std::sqrt(pow<2>(da) + pow<2>(DET_RESOLUTION / l2)) / angle_bragg;
}
}
} else {
if (polarized) {
err_ray1 = std::sqrt(pow<2>(da)) / angle_bragg;
} else {
err_ray1 = std::sqrt(pow<2>(da) + pow<2>(om_fwhm)) / angle_bragg;
}
}
const auto err_ray_temp =
0.68 *
std::sqrt((pow<2>(PIXEL_SIZE) + pow<2>(SLIT2_SIZE)) / pow<2>(l2)) /
angle_bragg;
return std::min(err_ray1, err_ray_temp);
}
double err_res(const double lambda, const double l2) {
using namespace boost::math;
const auto tofd = L1 + l2;
const auto period = 60. / CHOPPER_SPEED;
const auto det_res =
PLANCK_PER_KG * TOF_BIN_WIDTH * 1e-6 / lambda / (2 * tofd);
const auto chop_res =
(CHOPPER_GAP +
(PLANCK_PER_KG * CHOPPER_OPENING_ANGLE * period / (360 * lambda))) /
(2 * tofd);
return 0.98 *
(3 * pow<2>(chop_res) + pow<2>(det_res) + 3 * chop_res * det_res) /
(2 * chop_res + det_res);
double om_fwhm(const double l2, const double dirl2, const double dirs2w,
const double dirs3w, const double det_fwhm,
const double detdb_fwhm) {
using namespace boost::math;
const double sdr = SLIT2_DIST + l2;
const double ratio = SLIT2_SIZE / SLIT1_SIZE;
const double interslit = SLIT1_DIST - SLIT2_DIST;
const double vs = sdr + (ratio * interslit) / (1 + ratio);
const double da = 0.68 * std::sqrt(pow<2>(SLIT1_SIZE) +
pow<2>(SLIT2_SIZE) / pow<2>(interslit));
const double da_det = std::sqrt(pow<2>(da * vs) + pow<2>(DET_RESOLUTION));
double om_fwhm{0};
if (std::abs(SLIT1_SIZE - dirs2w) >= 0.00004 ||
std::abs(SLIT2_SIZE - dirs3w) >= 0.00004) {
if ((det_fwhm - da_det) >= 0.) {
if (std::sqrt(pow<2>(det_fwhm) - pow<2>(da_det)) >= PIXEL_SIZE) {
om_fwhm = 0.5 * std::sqrt(pow<2>(det_fwhm) - pow<2>(da_det)) / dirl2;
} else {
om_fwhm = 0;
}
}
} else {
if (pow<2>(det_fwhm) - pow<2>(detdb_fwhm) >= 0.) {
if (std::sqrt(pow<2>(det_fwhm) - pow<2>(detdb_fwhm)) >= PIXEL_SIZE) {
om_fwhm =
0.5 * std::sqrt(pow<2>(det_fwhm) - pow<2>(detdb_fwhm)) / dirl2;
} else {
om_fwhm = 0.;
}
} else {
om_fwhm = 0.;
}
}
return om_fwhm;
}
double width_res(const double lambda, const double l2) {
using namespace boost::math;
const auto tofd = L1 + l2;
const auto period = 60. / CHOPPER_SPEED;
const auto sdr = SLIT2_DIST + l2;
const auto interslit = SLIT1_DIST - SLIT2_DIST;
const auto tempratio = (tofd - sdr) / interslit;
const auto tempa =
tempratio * std::abs(SLIT1_SIZE - SLIT2_SIZE) + SLIT1_SIZE;
const auto tempb = tempratio * (SLIT1_SIZE + SLIT2_SIZE) + SLIT1_SIZE;
const auto tempwidthfwhm = 0.49 * (pow<3>(tempb) - pow<3>(tempa)) /
(pow<2>(tempb) - pow<2>(tempa));
return tempwidthfwhm * period / (2 * M_PI * CHOPPER_RADIUS) *
PLANCK_PER_KG / lambda / tofd;
}
};
class ReflectometryMomentumTransferTestPerformance : public CxxTest::TestSuite {
public:
void setUp() override {
m_reflectedWS = makeWS();
m_directWS = m_reflectedWS->clone();
m_algorithm = makeAlgorithm(m_reflectedWS, m_directWS);
}
void test_performance() {
for (int i = 0; i < 1000; ++i)
m_algorithm->execute();
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
}
private:
static API::IAlgorithm_sptr
makeAlgorithm(API::MatrixWorkspace_sptr &reflectedWS,
API::MatrixWorkspace_sptr &directWS) {
std::vector<int> foreground(2);
foreground.front() = 0;
foreground.back() = 0;
auto alg = boost::make_shared<Algorithms::ReflectometryMomentumTransfer>();
alg->setChild(true);
alg->setRethrows(true);
alg->initialize();
alg->isInitialized();
alg->setProperty("InputWorkspace", reflectedWS);
alg->setPropertyValue("OutputWorkspace", "_unused_for_child");
alg->setProperty("ReflectedBeamWorkspace", reflectedWS);
alg->setProperty("ReflectedForeground", foreground);
alg->setProperty("DirectBeamWorkspace", directWS);
alg->setProperty("DirectForeground", foreground);
alg->setProperty("SummationType", "SumInLambda");
alg->setProperty("Polarized", false);
alg->setProperty("PixelSize", PIXEL_SIZE);
alg->setProperty("DetectorResolution", DET_RESOLUTION);
alg->setProperty("ChopperSpeed", CHOPPER_SPEED);
alg->setProperty("ChopperOpening", CHOPPER_OPENING_ANGLE);
alg->setProperty("ChopperRadius", CHOPPER_RADIUS);
alg->setProperty("ChopperpairDistance", CHOPPER_GAP);
alg->setProperty("Slit1Name", "slit1");
alg->setProperty("Slit1SizeSampleLog", "slit1.size");
alg->setProperty("Slit2Name", "slit2");
alg->setProperty("Slit2SizeSampleLog", "slit2.size");
alg->setProperty("TOFChannelWidth", TOF_BIN_WIDTH);
return alg;
}
static API::MatrixWorkspace_sptr makeWS() {
using namespace WorkspaceCreationHelper;
constexpr double startX{1000.};
const Kernel::V3D sourcePos{0., 0., -L1};
const Kernel::V3D &monitorPos = sourcePos;
const Kernel::V3D samplePos{
0., 0., 0.,
};
const double braggAngle{0.7};
const auto detZ = DET_DIST * std::cos(2 * braggAngle);
const auto detY = DET_DIST * std::sin(2 * braggAngle);
const Kernel::V3D detectorPos{0., detY, detZ};
const Kernel::V3D slit1Pos{0., 0., -SLIT1_DIST};
const Kernel::V3D slit2Pos{0., 0., -SLIT2_DIST};
constexpr int nHisto{2};
constexpr int nBins{10000};
auto ws = create2DWorkspaceWithReflectometryInstrument(
startX, slit1Pos, slit2Pos, SLIT1_SIZE, SLIT2_SIZE, sourcePos,
monitorPos, samplePos, detectorPos, nHisto, nBins, TOF_BIN_WIDTH);
// Add slit sizes to sample logs, too.
auto &run = ws->mutableRun();
constexpr bool overwrite{true};
const std::string meters{"m"};
run.addProperty("slit1.size", SLIT1_SIZE, meters, overwrite);
run.addProperty("slit2.size", SLIT2_SIZE, meters, overwrite);
auto convertUnits =
API::AlgorithmManager::Instance().createUnmanaged("ConvertUnits");
convertUnits->initialize();
convertUnits->setChild(true);
convertUnits->setRethrows(true);
convertUnits->setProperty("InputWorkspace", ws);
convertUnits->setPropertyValue("OutputWorkspace", "_unused_for_child");
convertUnits->setProperty("Target", "Wavelength");
convertUnits->setProperty("EMode", "Elastic");
convertUnits->execute();
API::MatrixWorkspace_sptr outWS =
convertUnits->getProperty("OutputWorkspace");
return outWS;
private:
API::IAlgorithm_sptr m_algorithm;
API::MatrixWorkspace_sptr m_directWS;
API::MatrixWorkspace_sptr m_reflectedWS;
#endif /* MANTID_ALGORITHMS_REFLECTOMETRYMOMENTUMTRANSFERTEST_H_ */