Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os, sys
import numpy as np
import datetime
sys.path.append('/Users/ganeva/build/parse/parse-1.6.6')
from parse import *
class DNSdata:
"""
class which describes the DNS data structure
will be used for data read-in and write-out routines
"""
def __init__(self):
self.title = ""
self.experiment_number = ""
self.run_number = ""
self.start_time = ""
self.end_time = ""
self.duration = None
self.deterota = 0
self.wavelength = None # Angstrom
self.ndet = 24
self.sample_name = ""
self.userid = ""
self.user_name = ""
self.sample_description = ""
self.coil_status = ""
self.befilter_status = ""
self.notes = ""
self.monochromator_angle = None # degree
self.monochromator_position = None
self.huber = None
self.cradle_lower = None
self.cradle_upper = None
self.slit_i_upper_blade_position = None
self.slit_i_lower_blade_position = None
self.slit_i_left_blade_position = None
self.slit_i_right_blade_position = None
self.slit_f_upper_blade_position = None
self.slit_f_lower_blade_position = None
self.detector_position_vertical = None
self.polarizer_translation = None
self.polarizer_rotation = None
self.flipper_precession_current = None
self.flipper_z_compensation_current = None
self.a_coil_current = None
self.b_coil_current = None
self.c_coil_current = None
self.z_coil_current = None
self.t1 = None # T1
self.t2 = None # T2
self.tsp = None # T_setpoint
self.tof_channel_number = None
self.tof_channel_width = None
self.tof_delay_time = None
self.tof_elastic_channel = None
self.chopper_rotation_speed = None
self.chopper_slits = None
self.monitor_counts = None
def read_legacy(self, filename):
"""
reads the DNS legacy ascii file into the DNS data object
"""
with open(filename, 'r') as fhandler:
# read file content and split it into blocks
splitsymbol = '#--------------------------------------------------------------------------'
unparsed = fhandler.read()
blocks = unparsed.split(splitsymbol)
# parse each block
# parse block 0 (header)
# [TODO:] rewrite to get rid of dependence on parse
res = parse("# DNS Data userid={userid},exp={exp_id},file={run_number},sample={sample_name}", blocks[0])
# [TODO:] raise exception on the wrong file format
#if not res:
# print "Wrong file format."
# sys.exit()
self.run_number = res['run_number']
self.experiment_number = res['exp_id']
self.sample_name = res['sample_name']
self.userid = res['userid']
# parse block 1 (general information)
b1splitted = map(str.strip, blocks[1].split('#'))
b1rest = [el for el in b1splitted] # otherwise unexpected behaviour due to the removed lines
for line in b1splitted:
res = parse('User: {user_name}', line)
if res:
self.user_name = res['user_name']
b1rest.remove(line)
res = parse('Sample: {sample_descr}', line)
if res:
self.sample_description = res['sample_descr']
b1rest.remove(line)
res = parse('{coil_status} xyz-coil,', line)
if res:
self.coil_status = res['coil_status']
b1rest.remove(line)
res = parse('{filter_status} Be-filter', line)
if res:
self.befilter_status = res['filter_status']
b1rest.remove(line)
# the rest unparsed lines go to notes for the moment
# [TODO]: parse more information about the sample, e.g. space group etc.
self.notes = ' '.join(b1rest)
# parse block 2 (wavelength and mochromator angle)
# for the moment, only theta and lambda are needed
b2splitted = map(str.strip, blocks[2].split('#'))
# assume that theta and lambda are always on the fixed positions
# assume theta is give in degree, lambda in nm
line = b2splitted[2].split()
self.monochromator_angle = float(line[2])
self.wavelength = float(line[3])*10.0
# parse block 3 (motors position)
b3splitted = map(str.strip, blocks[3].split('#'))
self.monochromator_position = float(b3splitted[2].split()[1])
# DeteRota, angle of rotation of detector bank
self.deterota = float(b3splitted[3].split()[1])
# Huber default units degree
self.huber = float(b3splitted[5].split()[1])
self.cradle_lower = float(b3splitted[6].split()[1])
self.cradle_upper = float(b3splitted[7].split()[1])
# Slit_i, convert mm to meter
self.slit_i_upper_blade_position = 0.001*float(b3splitted[9].split()[2])
self.slit_i_lower_blade_position = 0.001*float(b3splitted[10].split()[1])
self.slit_i_left_blade_position = 0.001*float(b3splitted[11].split()[2])
self.slit_i_right_blade_position = 0.001*float(b3splitted[12].split()[1])
# Slit_f
self.slit_f_upper_blade_position = 0.001*float(b3splitted[14].split()[1])
self.slit_f_lower_blade_position = 0.001*float(b3splitted[15].split()[1])
# Detector_position vertical
self.detector_position_vertical = 0.001*float(b3splitted[16].split()[1])
# Polarizer
self.polarizer_translation = 0.001*float(b3splitted[19].split()[1])
self.polarizer_rotation = float(b3splitted[20].split()[1])
# parse block 4 (B-fields), only currents in A are taken
b4splitted = map(str.strip, blocks[4].split('#'))
self.flipper_precession_current = float(b4splitted[2].split()[1])
self.flipper_z_compensation_current = float(b4splitted[3].split()[1])
self.a_coil_current = float(b4splitted[4].split()[1])
self.b_coil_current = float(b4splitted[5].split()[1])
self.c_coil_current = float(b4splitted[6].split()[1])
self.z_coil_current = float(b4splitted[7].split()[1])
# parse block 5 (Temperatures)
# assume: T1=cold_head_temperature, T2=sample_temperature
b5splitted = map(str.strip, blocks[5].split('#'))
self.t1 = float(b5splitted[2].split()[1])
self.t2 = float(b5splitted[3].split()[1])
self.tsp = float(b5splitted[4].split()[1])
# parse block 6 (TOF parameters)
b6splitted = map(str.strip, blocks[6].split('#'))
self.tof_channel_number = int(b6splitted[2].split()[2])
self.tof_channel_width = float(b6splitted[3].split()[3])
self.tof_delay_time = float(b6splitted[4].split()[2])
self.tof_elastic_channel = int(b6splitted[6].split()[3])
# chopper rotation speed
self.chopper_rotation_speed = float(b6splitted[7].split()[2])
# chopper number of slits
self.chopper_slits = int(b6splitted[5].split()[2])
# parse block 7 (Time and monitor)
# assume everything to be at the fixed positions
b7splitted = map(str.strip, blocks[7].split('#'))
# duration
line = b7splitted[2].split()
self.duration = float(line[1]) # assume seconds [TODO]: check
# monitor data
line = b7splitted[3].split()
self.monitor_counts = int(line[1])
# start_time and end_time
outfmt = "%Y-%m-%dT%H:%M:%S"
sinfmt = "start at %a %b %d %H:%M:%S %Y"
einfmt = "stopped at %a %b %d %H:%M:%S %Y"
self.start_time = datetime.datetime.strptime(b7splitted[5], sinfmt).strftime(outfmt)
self.end_time = datetime.datetime.strptime(b7splitted[6], einfmt).strftime(outfmt)
if __name__== '__main__':
fname = sys.argv[1]
d = DNSdata()
d.read_legacy(fname)
print d.__dict__