Newer
Older
#include "MantidDataHandling/LoadBBY.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/Instrument/RectangularDetector.h"
#include "MantidGeometry/Objects/ShapeFactory.h"
#include "MantidNexus/NexusClasses.h"
#include <Poco/TemporaryFile.h>
namespace Mantid {
namespace DataHandling {
// register the algorithm into the AlgorithmFactory
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// consts
static const size_t HISTO_BINS_X = 240;
static const size_t HISTO_BINS_Y = 256;
// 100 = 40 + 20 + 40
static const size_t Progress_LoadBinFile = 40;
static const size_t Progress_ReserveMemory = 20;
using ANSTO::EventVector_pt;
class BbyDetectorBankFactory {
private:
// fields
const Geometry::Instrument_sptr m_instrument;
const Geometry::Object_sptr m_pixelShape;
const size_t m_xPixelCount;
const size_t m_yPixelCount;
const double m_pixelWidth;
const double m_pixelHeight;
const Kernel::V3D m_center;
public:
// construction
BbyDetectorBankFactory(Geometry::Instrument_sptr instrument,
Geometry::Object_sptr pixelShape, size_t xPixelCount,
size_t yPixelCount, double pixelWidth,
double pixelHeight, const Kernel::V3D ¢er);
// methods
void createAndAssign(size_t startIndex, const Kernel::V3D &pos,
const Kernel::Quat &rot) const;
};
/**
* Return the confidence value that this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadBBY::confidence(Kernel::FileDescriptor &descriptor) const {
if (descriptor.extension() != ".tar")
return 0;
ANSTO::Tar::File file(descriptor.filename());
if (!file.good())
return 0;
size_t hdfFiles = 0;
size_t binFiles = 0;
const std::vector<std::string> &subFiles = file.files();
for (auto itr = subFiles.begin(); itr != subFiles.end(); ++itr) {
auto len = itr->length();
if ((len > 4) && (itr->find_first_of("\\/", 0, 2) == std::string::npos)) {
if ((itr->rfind(".hdf") == len - 4) && (itr->compare(0, 3, "BBY") == 0))
hdfFiles++;
else if (itr->rfind(".bin") == len - 4)
binFiles++;
David Mannicke
committed
}
}
return (hdfFiles == 1) && (binFiles == 1) ? 50 : 0;
}
/**
* Initialise the algorithm. Declare properties which can be set before
* execution (input) or
* read from after the execution (output).
*/
void LoadBBY::init() {
// Specify file extensions which can be associated with a BBY file.
std::vector<std::string> exts;
// Declare the Filename algorithm property. Mandatory. Sets the path to the
// file to load.
exts.clear();
exts.push_back(".tar");
declareProperty(
new API::FileProperty("Filename", "", API::FileProperty::Load, exts),
"The input filename of the stored data");
exts.clear();
exts.push_back(".xml");
declareProperty(
new API::FileProperty("Mask", "", API::FileProperty::OptionalLoad, exts),
"The input filename of the mask data");
// offsets
exts.clear();
exts.push_back(".csv");
declareProperty(
new API::FileProperty("TubeOffsets", "", API::FileProperty::OptionalLoad, exts),
"The input filename of the tube offset data");
declareProperty(new API::WorkspaceProperty<API::IEventWorkspace>(
"OutputWorkspace", "", Kernel::Direction::Output));
declareProperty(new Kernel::PropertyWithValue<size_t>(
"TubeBinning", 1, Kernel::Direction::Input),
"Default: 1");
declareProperty(new Kernel::PropertyWithValue<double>(
"FilterByTofMin", 0, Kernel::Direction::Input),
"Optional: To exclude events that do not fall within a range "
"of times-of-flight. "
"This is the minimum accepted value in microseconds. Keep "
"blank to load all events.");
declareProperty(new Kernel::PropertyWithValue<double>(
"FilterByTofMax", 50000000, Kernel::Direction::Input),
"Optional: To exclude events that do not fall within a range "
"of times-of-flight. "
"This is the maximum accepted value in microseconds. Keep "
"blank to load all events.");
declareProperty(
new Kernel::PropertyWithValue<double>("FilterByTimeStart", EMPTY_DBL(),
Kernel::Direction::Input),
"Optional: To only include events after the provided start time, in "
"seconds (relative to the start of the run).");
declareProperty(
new Kernel::PropertyWithValue<double>("FilterByTimeStop", EMPTY_DBL(),
Kernel::Direction::Input),
"Optional: To only include events before the provided stop time, in "
"seconds (relative to the start of the run).");
declareProperty(new Kernel::PropertyWithValue<double>(
"PeriodMaster", 0.0, Kernel::Direction::Input),
"Optional:");
declareProperty(new Kernel::PropertyWithValue<double>(
"PeriodSlave", 0.0, Kernel::Direction::Input),
"Optional:");
declareProperty(new Kernel::PropertyWithValue<double>(
"PhaseSlave", 0.0, Kernel::Direction::Input),
"Optional:");
std::string grpOptional = "Optional";
setPropertyGroup("TubeBinning", grpOptional);
setPropertyGroup("FilterByTofMin", grpOptional);
setPropertyGroup("FilterByTofMax", grpOptional);
setPropertyGroup("FilterByTimeStart", grpOptional);
setPropertyGroup("FilterByTimeStop", grpOptional);
std::string grpPhaseCorrection = "Phase Correction";
setPropertyGroup("PeriodMaster", grpPhaseCorrection);
setPropertyGroup("PeriodSlave", grpPhaseCorrection);
setPropertyGroup("PhaseSlave", grpPhaseCorrection);
}
/**
* Execute the algorithm.
*/
void LoadBBY::exec() {
// Delete the output workspace name if it existed
std::string outName = getPropertyValue("OutputWorkspace");
if (API::AnalysisDataService::Instance().doesExist(outName))
API::AnalysisDataService::Instance().remove(outName);
// Get the name of the data file.
std::string filename = getPropertyValue("Filename");
ANSTO::Tar::File file(filename);
if (!file.good())
return;
bool maskFileLoaded = false;
std::vector<bool> mask =
createMaskVector(getPropertyValue("Mask"), maskFileLoaded);
// load tube offsets
bool offsetFileLoaded = false;
std::vector<int> offsets = createOffsetVector(getPropertyValue("TubeOffsets"),
offsetFileLoaded);
for (size_t x = 0; x != HISTO_BINS_X; x++) {
int offset = offsets[x];
if (offset != 0) {
maskFileLoaded = true;
size_t s0 = HISTO_BINS_Y * x;
if (offset > 0) {
for (int y = 0; y != offset; y++)
mask[s0 + (size_t)y] = false;
}
else { // if (offset < 0)
for (size_t y = HISTO_BINS_Y + static_cast<size_t>(offset); y != HISTO_BINS_Y; y++)
mask[s0 + y] = false;
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
size_t tubeBinning = getProperty("TubeBinning");
if (tubeBinning < 1)
tubeBinning = 1;
else if (tubeBinning > HISTO_BINS_Y)
tubeBinning = HISTO_BINS_Y;
size_t finalBinsY = HISTO_BINS_Y / tubeBinning;
size_t pixelsCutOff = HISTO_BINS_Y % tubeBinning;
size_t pixelsCutOffH = pixelsCutOff / 2;
size_t pixelsCutOffL = pixelsCutOff - pixelsCutOffH;
// update masking
if (tubeBinning > 1)
for (size_t x = 0; x != HISTO_BINS_X; x++) {
size_t s0 = HISTO_BINS_Y * x;
// mask out cut off pixels (low)
for (size_t y = 0; y < pixelsCutOffL; y++)
mask[s0 + y] = false;
// mask out cut off pixels (high)
for (size_t y = HISTO_BINS_Y - pixelsCutOffH; y < HISTO_BINS_Y; y++)
mask[s0 + y] = false;
// if one pixel is masked then all pixels in that binning group have to be masked
for (size_t j = 0; j < finalBinsY; j++) {
size_t y0 = j * tubeBinning + pixelsCutOffL;
for (size_t dy = 0; dy < tubeBinning; dy++)
// if one pixel is masked ...
if (!mask[s0 + y0 + dy]) {
for (dy = 0; dy < tubeBinning; dy++)
mask[s0 + y0 + dy] = false; // ... mask all pixels
break;
}
}
}
double tofMinBoundary = getProperty("FilterByTofMin");
double tofMaxBoundary = getProperty("FilterByTofMax");
// "loading neutron counts", "creating neutron event lists" and "loading
// neutron events"
API::Progress prog(this, 0.0, 1.0, Progress_LoadBinFile +
Progress_ReserveMemory +
Progress_LoadBinFile);
prog.doReport("creating instrument");
// create workspace
DataObjects::EventWorkspace_sptr eventWS =
boost::make_shared<DataObjects::EventWorkspace>();
eventWS->initialize(finalBinsY * HISTO_BINS_X,
nBins + 1, // number of TOF bin boundaries
nBins);
// set the units
eventWS->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create("TOF");
eventWS->setYUnit("Counts");
// set title
const std::vector<std::string> &subFiles = file.files();
for (auto itr = subFiles.begin(); itr != subFiles.end(); ++itr)
if (itr->compare(0, 3, "BBY") == 0) {
std::string title = *itr;
if (title.rfind(".hdf") == title.length() - 4)
title.resize(title.length() - 4);
if (title.rfind(".nx") == title.length() - 3)
title.resize(title.length() - 3);
eventWS->setTitle(title);
break;
// set auxiliaries
eventWS->mutableRun().addProperty("Filename", filename);
// eventWS->mutableRun().addProperty("run_number", 1);
// eventWS->mutableRun().addProperty("run_start", "1991-01-01T00:00:00", true
// );
// eventWS->mutableRun().addProperty("duration", duration[0], units);
// create instrument
Geometry::Instrument_sptr instrument = createInstrument(file, pixelsCutOffL, pixelsCutOffH, tubeBinning, finalBinsY);
eventWS->setInstrument(instrument);
// load events
size_t numberHistograms = eventWS->getNumberHistograms();
std::vector<EventVector_pt> eventVectors(numberHistograms, NULL);
std::vector<size_t> eventCounts(numberHistograms, 0);
std::vector<detid_t> detIDs = instrument->getDetectorIDs();
// phase correction
double periodMaster = getProperty("PeriodMaster");
double periodSlave = getProperty("PeriodSlave");
double phaseSlave = getProperty("PhaseSlave");
if ((periodMaster < 0.0) || (periodSlave < 0.0))
throw std::runtime_error("Please specify a positive value for PeriodMaster and PeriodSlave.");
bool setPeriodMaster = periodMaster > 0.0;
bool setPeriodSlave = periodSlave > 0.0;
bool setPhaseSlave = phaseSlave != 0.0;
if ((setPeriodMaster != setPeriodSlave) || setPhaseSlave)
throw std::runtime_error("Please specify PeriodMaster, PeriodSlave and PhaseSlave or none of them.");
double periode = periodSlave > 0.0 ? periodSlave : periodMaster;
double shift = -1.0/6.0*periodMaster - periodSlave * phaseSlave / 360.0;
// count total events per pixel to reserve necessary memory
ANSTO::EventCounter eventCounter(eventCounts, mask, offsets, HISTO_BINS_Y,
pixelsCutOffL, tubeBinning, finalBinsY,
loadEvents(prog, "loading neutron counts", file, tofMinBoundary,
tofMaxBoundary, eventCounter);
// prepare event storage
ANSTO::ProgressTracker progTracker(prog, "creating neutron event lists",
numberHistograms, Progress_ReserveMemory);
for (size_t i = 0; i != numberHistograms; ++i) {
DataObjects::EventList &eventList = eventWS->getEventList(i);
eventList.setSortOrder(
DataObjects::PULSETIME_SORT); // why not PULSETIME[TOF]_SORT ?
eventList.reserve(eventCounts[i]);
detid_t id = detIDs[i];
eventList.setDetectorID(id);
eventList.setSpectrumNo(id);
DataObjects::getEventsFrom(eventList, eventVectors[i]);
progTracker.update(i);
}
progTracker.complete();
ANSTO::EventAssigner eventAssigner(eventVectors, mask, offsets,
HISTO_BINS_Y, pixelsCutOffL,
tubeBinning, finalBinsY,
periode, shift);
loadEvents(prog, "loading neutron events", file, tofMinBoundary,
tofMaxBoundary, eventAssigner);
Kernel::cow_ptr<MantidVec> axis;
MantidVec &xRef = axis.access();
xRef.resize(2, 0.0);
xRef[0] = std::max(0.0, eventCounter.tofMin() - 1); // just to make sure the bins hold it all
xRef[1] = eventCounter.tofMax() + 1;
eventWS->setAllX(axis);
if (maskFileLoaded) {
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// count total number of masked bins
size_t maskedBins = 0;
for (size_t x = 0; x != HISTO_BINS_X; x++) {
size_t s0 = HISTO_BINS_Y * x;
for (size_t j = 0; j < finalBinsY; j++) {
size_t y0 = j * tubeBinning + pixelsCutOffL;
for (size_t dy = 0; dy < tubeBinning; dy++)
if (!mask[s0 + y0 + dy]) {
maskedBins++;
break;
}
}
}
// create list of masked bins
std::vector<size_t> maskIndexList(maskedBins);
size_t binIndex = 0;
size_t maskIndex = 0;
for (size_t x = 0; x != HISTO_BINS_X; x++) {
size_t s0 = HISTO_BINS_Y * x;
for (size_t j = 0; j < finalBinsY; j++, binIndex++) {
size_t y0 = j * tubeBinning + pixelsCutOffL;
for (size_t dy = 0; dy < tubeBinning; dy++)
if (!mask[s0 + y0 + dy]) {
maskIndexList[maskIndex++] = binIndex;
break;
}
}
}
API::IAlgorithm_sptr maskingAlg = createChildAlgorithm("MaskDetectors");
maskingAlg->setProperty("Workspace", eventWS);
maskingAlg->setProperty("WorkspaceIndexList", maskIndexList);
maskingAlg->executeAsChildAlg();
}
setProperty("OutputWorkspace", eventWS);
}
// instrument creation
Geometry::Instrument_sptr LoadBBY::createInstrument(ANSTO::Tar::File &tarFile, size_t pixelsCutOffL, size_t pixelsCutOffH, size_t tubeBinning, size_t finalBinsY) {
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// instrument
Geometry::Instrument_sptr instrument =
boost::make_shared<Geometry::Instrument>("BILBY");
instrument->setDefaultViewAxis("Z-");
// source
Geometry::ObjComponent *source =
new Geometry::ObjComponent("Source", instrument.get());
instrument->add(source);
instrument->markAsSource(source);
//// chopper
// Geometry::ObjComponent *chopperPoint = new
// Geometry::ObjComponent("Chopper", instrument.get());
// instrument->add(chopper);
// instrument->markAsChopperPoint(chopper);
// sample
Geometry::ObjComponent *samplePos =
new Geometry::ObjComponent("Sample", instrument.get());
instrument->add(samplePos);
instrument->markAsSamplePos(samplePos);
double L2_det_value = 33.15616015625;
double L1_chopper_value = 18.47258984375;
// double L1_source_value = 9.35958984375;
double L2_curtainl_value = 23.28446093750;
double L2_curtainr_value = 23.28201953125;
double L2_curtainu_value = 24.28616015625;
double L2_curtaind_value = 24.28235937500;
double D_det_value = (8.4 + 2.0) / (2 * 1000);
double D_curtainl_value = 0.3816;
double D_curtainr_value = 0.4024;
double D_curtainu_value = 0.3947;
double D_curtaind_value = 0.3978;
// extract hdf file
int64_t fileSize = 0;
const std::vector<std::string> &files = tarFile.files();
for (auto itr = files.begin(); itr != files.end(); ++itr)
if (itr->rfind(".hdf") == itr->length() - 4) {
tarFile.select(itr->c_str());
fileSize = tarFile.selected_size();
break;
David Mannicke
committed
}
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
if (fileSize != 0) {
// create tmp file
Poco::TemporaryFile hdfFile;
boost::shared_ptr<FILE> handle(fopen(hdfFile.path().c_str(), "wb"), fclose);
if (handle) {
// copy content
char buffer[4096];
size_t bytesRead;
while (0 != (bytesRead = tarFile.read(buffer, sizeof(buffer))))
fwrite(buffer, bytesRead, 1, handle.get());
handle.reset();
NeXus::NXRoot root(hdfFile.path());
NeXus::NXEntry entry = root.openFirstEntry();
float tmp;
const double toMeters = 1.0 / 1000;
if (loadNXDataSet(tmp, entry, "instrument/L2_det"))
L2_det_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/Ltof_det"))
L1_chopper_value = tmp * toMeters - L2_det_value;
// if (loadNXDataSet(tmp, entry, "instrument/L1"))
// L1_source_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/L2_curtainl"))
L2_curtainl_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/L2_curtainr"))
L2_curtainr_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/L2_curtainu"))
L2_curtainu_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/L2_curtaind"))
L2_curtaind_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/detector/curtainl"))
D_curtainl_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/detector/curtainr"))
D_curtainr_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/detector/curtainu"))
D_curtainu_value = tmp * toMeters;
if (loadNXDataSet(tmp, entry, "instrument/detector/curtaind"))
D_curtaind_value = tmp * toMeters;
David Mannicke
committed
}
}
source->setPos(0.0, 0.0, -L1_chopper_value);
samplePos->setPos(0.0, 0.0, 0.0);
// dimensions of the detector (height is in y direction, width is in x
// direction)
double width = 336.0 / 1000; // meters
double height = 640.0 / 1000; // meters
double angle = 10.0; // degree
// raw data format
size_t xPixelCount = HISTO_BINS_X / 6;
size_t yPixelCount = HISTO_BINS_Y;
// we assumed that individual pixels have the same size and shape of a cuboid:
double pixel_width = width / static_cast<double>(xPixelCount);
double pixel_height = height / static_cast<double>(yPixelCount);
// adjusting for binning
auto diffPixelsCutOff = (pixelsCutOffL - pixelsCutOffH);
double detectorYOffset = static_cast<double>(diffPixelsCutOff)* pixel_height;
yPixelCount = finalBinsY;
pixel_height *= static_cast<double>(tubeBinning);
height = pixel_height * static_cast<double>(finalBinsY);
// final number of pixels
size_t pixelCount = xPixelCount * yPixelCount;
// Create size strings for shape creation
std::string pixel_width_str =
boost::lexical_cast<std::string>(pixel_width / 2);
std::string pixel_height_str =
boost::lexical_cast<std::string>(pixel_height / 2);
std::string pixel_depth_str =
"0.00001"; // Set the depth of a pixel to a very small number
// Define shape of a pixel as an XML string. See
// http://www.mantidproject.org/HowToDefineGeometricShape for details on
// shapes in Mantid.
std::string detXML =
"<cuboid id=\"pixel\">"
"<left-front-bottom-point x=\"+"+pixel_width_str+"\" y=\"-"+pixel_height_str+"\" z=\"0\" />"
"<left-front-top-point x=\"+"+pixel_width_str+"\" y=\"-"+pixel_height_str+"\" z=\""+pixel_depth_str+"\" />"
"<left-back-bottom-point x=\"-"+pixel_width_str+"\" y=\"-"+pixel_height_str+"\" z=\"0\" />"
"<right-front-bottom-point x=\"+"+pixel_width_str+"\" y=\"+"+pixel_height_str+"\" z=\"0\" />"
"</cuboid>";
// Create a shape object which will be shared by all pixels.
Geometry::Object_sptr pixelShape =
Geometry::ShapeFactory().createShape(detXML);
// create detector banks
BbyDetectorBankFactory factory(
instrument, pixelShape, xPixelCount, yPixelCount, pixel_width,
pixel_height, Kernel::V3D(0, (height - pixel_height) / 2 - detectorYOffset, 0));
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
// curtain l
factory.createAndAssign(0 * pixelCount,
Kernel::V3D(+D_curtainl_value, 0, L2_curtainl_value),
Kernel::Quat(0, Kernel::V3D(0, 0, 1)) *
Kernel::Quat(angle, Kernel::V3D(0, 1, 0)));
// curtain r
factory.createAndAssign(1 * pixelCount,
Kernel::V3D(-D_curtainr_value, 0, L2_curtainr_value),
Kernel::Quat(180, Kernel::V3D(0, 0, 1)) *
Kernel::Quat(angle, Kernel::V3D(0, 1, 0)));
// curtain u
factory.createAndAssign(2 * pixelCount,
Kernel::V3D(0, +D_curtainu_value, L2_curtainu_value),
Kernel::Quat(90, Kernel::V3D(0, 0, 1)) *
Kernel::Quat(angle, Kernel::V3D(0, 1, 0)));
// curtain d
factory.createAndAssign(3 * pixelCount,
Kernel::V3D(0, -D_curtaind_value, L2_curtaind_value),
Kernel::Quat(-90, Kernel::V3D(0, 0, 1)) *
Kernel::Quat(angle, Kernel::V3D(0, 1, 0)));
// back 1 (left)
factory.createAndAssign(4 * pixelCount,
Kernel::V3D(+D_det_value, 0, L2_det_value),
Kernel::Quat(0, Kernel::V3D(0, 0, 1)));
// back 2 (right)
factory.createAndAssign(5 * pixelCount,
Kernel::V3D(-D_det_value, 0, L2_det_value),
Kernel::Quat(180, Kernel::V3D(0, 0, 1)));
return instrument;
}
// load nx dataset
template <class T>
bool LoadBBY::loadNXDataSet(T &value, NeXus::NXEntry &entry,
const std::string &path) {
try {
// if (entry.isValid(path)) {
NeXus::NXDataSetTyped<T> dataSet = entry.openNXDataSet<float>(path);
dataSet.load();
value = *dataSet();
return true;
//}
} catch (std::runtime_error &) {
}
return false;
}
// read counts/events from binary file
template <class Counter>
void LoadBBY::loadEvents(API::Progress &prog, const char *progMsg,
ANSTO::Tar::File &file, const double tofMinBoundary,
const double tofMaxBoundary, Counter &counter) {
prog.doReport(progMsg);
// select bin file
int64_t fileSize = 0;
const std::vector<std::string> &files = file.files();
for (auto itr = files.begin(); itr != files.end(); ++itr)
if (itr->rfind(".bin") == itr->length() - 4) {
file.select(itr->c_str());
fileSize = file.selected_size();
break;
// for progress notifications
ANSTO::ProgressTracker progTracker(prog, progMsg, fileSize,
Progress_LoadBinFile);
unsigned int x = 0; // 9 bits [0-239] tube number
unsigned int y = 0; // 8 bits [0-255] position along tube
// uint v = 0; // 0 bits [ ]
// uint w = 0; // 0 bits [ ] energy
unsigned int dt = 0;
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
if ((fileSize == 0) || !file.skip(128))
return;
int state = 0;
unsigned int c;
while ((c = (unsigned int)file.read_byte()) != (unsigned int)-1) {
bool event_ended = false;
switch (state) {
case 0:
x = (c & 0xFF) >> 0; // set bit 1-8
break;
case 1:
x |= (c & 0x01) << 8; // set bit 9
y = (c & 0xFE) >> 1; // set bit 1-7
break;
case 2:
event_ended = (c & 0xC0) != 0xC0;
if (!event_ended)
c &= 0x3F;
y |= (c & 0x01) << 7; // set bit 8
dt = (c & 0xFE) >> 1; // set bit 1-5(7)
break;
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
event_ended = (c & 0xC0) != 0xC0;
if (!event_ended)
c &= 0x3F;
dt |= (c & 0xFF) << (5 + 6 * (state - 3)); // set bit 6...
break;
}
state++;
David Mannicke
committed
if (event_ended || (state == 8)) {
state = 0;
David Mannicke
committed
if ((x == 0) && (y == 0) && (dt == 0xFFFFFFFF)) {
} else if ((x >= HISTO_BINS_X) || (y >= HISTO_BINS_Y)) {
} else {
// conversion from 100 nanoseconds to 1 microsecond
David Mannicke
committed
if ((tofMinBoundary <= tof) && (tof <= tofMaxBoundary))
counter.addEvent(x, y, tof);
progTracker.update(file.selected_position());
David Mannicke
committed
}
}
}
// load mask file
std::vector<bool> LoadBBY::createMaskVector(const std::string &filename,
bool &fileLoaded) {
std::vector<bool> result(HISTO_BINS_X * HISTO_BINS_Y, true);
std::ifstream input(filename.c_str());
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
if (input.good()) {
std::string line;
while (std::getline(input, line)) {
auto i0 = line.find("<detids>");
auto iN = line.find("</detids>");
if ((i0 != std::string::npos) && (iN != std::string::npos) && (i0 < iN)) {
line = line.substr(i0 + 8, iN - i0 - 8);
std::stringstream ss(line);
std::string item;
while (std::getline(ss, item, ',')) {
auto k = item.find('-');
size_t p0, p1;
if (k != std::string::npos) {
p0 = boost::lexical_cast<size_t>(item.substr(0, k));
p1 = boost::lexical_cast<size_t>(
item.substr(k + 1, item.size() - k - 1));
if (p0 > p1)
std::swap(p0, p1);
} else {
p0 = boost::lexical_cast<size_t>(item);
p1 = p0;
}
if (p0 < result.size()) {
if (p1 >= result.size())
p1 = result.size() - 1;
while (p0 <= p1)
result[p0++] = false;
David Mannicke
committed
}
David Mannicke
committed
}
David Mannicke
committed
}
}
}
return result;
}
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
// load tube offset file
std::vector<int> LoadBBY::createOffsetVector(const std::string &filename,
bool &fileLoaded) {
std::vector<int> result(HISTO_BINS_X, 0);
std::ifstream input(filename.c_str());
if (input.good()) {
std::string line;
while (std::getline(input, line)) {
auto i1 = line.find_first_of(",;");
if (i1 == std::string::npos)
continue;
auto i2 = line.find_first_of(",;", i1 + 1);
if (i2 == std::string::npos)
i2 = line.size();
size_t index = boost::lexical_cast<size_t>(line.substr(0, i1));
int offset = boost::lexical_cast<int>(line.substr(i1 + 1, line.size() - i1 - 1));
if (index < HISTO_BINS_X)
result[index] = offset;
}
fileLoaded = true;
}
else {
fileLoaded = false;
}
return result;
}
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
// DetectorBankFactory
BbyDetectorBankFactory::BbyDetectorBankFactory(
Geometry::Instrument_sptr instrument, Geometry::Object_sptr pixelShape,
size_t xPixelCount, size_t yPixelCount, double pixelWidth,
double pixelHeight, const Kernel::V3D ¢er)
: m_instrument(instrument), m_pixelShape(pixelShape),
m_xPixelCount(xPixelCount), m_yPixelCount(yPixelCount),
m_pixelWidth(pixelWidth), m_pixelHeight(pixelHeight), m_center(center) {}
void BbyDetectorBankFactory::createAndAssign(size_t startIndex,
const Kernel::V3D &pos,
const Kernel::Quat &rot) const {
// create a RectangularDetector which represents a rectangular array of pixels
Geometry::RectangularDetector *bank = new Geometry::RectangularDetector(
"bank",
m_instrument.get()); // ??? possible memory leak!? "new" without "delete"
bank->initialize(m_pixelShape,
// x
(int)m_xPixelCount, 0, m_pixelWidth,
// y
(int)m_yPixelCount, 0, m_pixelHeight,
// indices
(int)startIndex, true, (int)m_yPixelCount);
for (size_t x = 0; x < m_xPixelCount; ++x)
for (size_t y = 0; y < m_yPixelCount; ++y)
m_instrument->markAsDetector(bank->getAtXY((int)x, (int)y).get());
Kernel::V3D center(m_center);
rot.rotate(center);
bank->rotate(rot);
bank->translate(pos - center);
}
} // namespace