Skip to content
Snippets Groups Projects
ProcessDasNexusLog.cpp 16.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
#include "MantidDataHandling/ProcessDasNexusLog.h"
#include "MantidKernel/System.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/Property.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidAPI/FileProperty.h"

#include <fstream>

using namespace Mantid::Kernel;
using namespace Mantid::API;

namespace Mantid
{
namespace DataHandling
{

  DECLARE_ALGORITHM(ProcessDasNexusLog)

  //----------------------------------------------------------------------------------------------
  /** Constructor
   */
  ProcessDasNexusLog::ProcessDasNexusLog()
  {
  }
    
  //----------------------------------------------------------------------------------------------
  /** Destructor
   */
  ProcessDasNexusLog::~ProcessDasNexusLog()
  {
  }
  
  void ProcessDasNexusLog::initDocs(){
    this->setWikiSummary("Process DAS logs recorded in Nexus file. ");
    this->setOptionalMessage("DAS log cannot be used directly.");

    return;
  }

  void ProcessDasNexusLog::init()
  {
    this->declareProperty(new API::WorkspaceProperty<API::MatrixWorkspace>("InputWorkspace", "", Direction::InOut),
        "Input Workspace containing the log to process.");
    this->declareProperty("LogToProcess", "", "Name of the log to process.");
    this->declareProperty("ProcessedLog", "", "Name of the new log containing processed log.");
    this->declareProperty("NumberOfOutputs", 4000, "Number of log entries written to file.  A negative input disables this option. ");
    this->declareProperty(new API::FileProperty("OutputLogFile", "", API::FileProperty::Save),
        "Directory for output files.");
    this->declareProperty(new API::FileProperty("OutputDirectory", "", API::FileProperty::Directory),
        "Directory for output files.");

    return;
  }

  void ProcessDasNexusLog::exec()
  {
    // 1. Get input
    API::MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
    std::string inlogname = getProperty("LogToProcess");
    std::string outlogname = getProperty("ProcessedLog");
    int numentriesoutput = getProperty("NumberOfOutputs");
    std::string outputfilename = getProperty("OutputLogFile");

    // 2. Check Input
    // 1. Get log
    Kernel::Property* log = inWS->run().getProperty(inlogname);
    if (!log)
    {
      g_log.error() << "Log " << inlogname << " does not exist!" << std::endl;
      throw std::invalid_argument("Non-exising log name");
    }
    Kernel::TimeSeriesProperty<double>* tslog = dynamic_cast<Kernel::TimeSeriesProperty<double>* >(log);
    if (!tslog)
    {
      g_log.error() << "Log " << inlogname << " is not time series log" << std::endl;
      throw std::invalid_argument("Log type error!");
    }

    // 3. Do some check for log statistic
    checkLog(inWS, inlogname);

    // 3. Convert Das log to log for absolute time
    std::vector<Kernel::DateAndTime> abstimevec;
    std::vector<double> orderedtofs;
    convertToAbsoluteTime(inWS, inlogname, abstimevec, orderedtofs);

    // 4. Add vector to log
    addLog(inWS, abstimevec, 1.0, outlogname, tslog->timesAsVector(), orderedtofs, false);

    // 5. Optionally write out log to
    if (numentriesoutput > 0)
    {
      this->writeLogtoFile(inWS, inlogname, static_cast<size_t>(numentriesoutput), outputfilename);
    }
  }


  /*
   * Add and check log from processed absolute time stamps
   */
  void ProcessDasNexusLog::addLog(API::MatrixWorkspace_sptr ws, std::vector<Kernel::DateAndTime> timevec,
      double unifylogvalue, std::string logname, std::vector<Kernel::DateAndTime> pulsetimes,
      std::vector<double> orderedtofs, bool docheck)
  {
    // 1. Do some static
    g_log.notice() << "Vector size = " << timevec.size() << std::endl;
    double sum1dtms = 0.0; // sum(dt^2)
    double sum2dtms = 0.0; // sum(dt^2)
    size_t numinvert = 0;
    size_t numsame = 0;
    size_t numnormal = 0;
    double maxdtms = 0;
    double mindtms = 1.0E20;
    size_t numdtabove10p = 0;
    size_t numdtbelow10p = 0;

    double sampledtms = 0.00832646*1.0E6;
    double dtmsA10p = sampledtms*1.1;
    double dtmsB10p = sampledtms/1.0;

    for (size_t i = 1; i < timevec.size(); i ++)
    {
      int64_t dtns = timevec[i].total_nanoseconds()-timevec[i-1].total_nanoseconds();
      double dtms = static_cast<double>(dtns)*1.0E-3;

      sum1dtms += dtms;
      sum2dtms += dtms*dtms;
      if (dtns == 0)
        numsame ++;
      else if (dtns < 0)
        numinvert ++;
      else
        numnormal ++;

      if (dtms > maxdtms)
        maxdtms = dtms;
      if (dtms < mindtms)
        mindtms = dtms;

      if (dtms > dtmsA10p)
        numdtabove10p ++;
      else if (dtms < dtmsB10p)
        numdtbelow10p ++;

    } // ENDFOR

    double dt = sum1dtms/static_cast<double>(timevec.size())*1.0E-6;
    double stddt = sqrt(sum2dtms/static_cast<double>(timevec.size())*1.0E-12 - dt*dt);

    g_log.notice() << "Normal   dt = " << numnormal << std::endl;
    g_log.notice() << "Zero     dt = " << numsame << std::endl;
    g_log.notice() << "Negative dt = " << numinvert << std::endl;
    g_log.notice() << "Avg d(T) = " << dt << " seconds +/- " << stddt << ",  Frequency = " << 1.0/dt << std::endl;
    g_log.notice() << "d(T) (unit ms) is in range [" << mindtms << ", " << maxdtms << "]"<< std::endl;
    g_log.notice() << "Number of d(T) 10% larger than average  = " << numdtabove10p << std::endl;
    g_log.notice() << "Number of d(T) 10% smaller than average = " << numdtbelow10p << std::endl;

    g_log.notice() << "Size of timevec, pulsestimes, orderedtofs = " << timevec.size() << ", "
        << pulsetimes.size() << ", " << orderedtofs.size() << std::endl;

    if (docheck)
    {
      exportErrorLog(ws, timevec, pulsetimes, orderedtofs, 1/(0.5*240.1));
      calDistributions(timevec, 1/(0.5*240.1));
    }

    // 2. Add log
    Kernel::TimeSeriesProperty<double>* newlog = new Kernel::TimeSeriesProperty<double>(logname);
    for (size_t i = 0; i < timevec.size(); i ++)
    {
      newlog->addValue(timevec[i], unifylogvalue);
    }
    ws->mutableRun().addProperty(newlog, true);

    return;
  }

  /*
   * Export time stamps looking erroreous
   */
  void ProcessDasNexusLog::exportErrorLog(API::MatrixWorkspace_sptr ws, std::vector<Kernel::DateAndTime> abstimevec,
      std::vector<Kernel::DateAndTime> pulsetimes, std::vector<double>orderedtofs, double dts)
  {
    std::string outputdir = getProperty("OutputDirectory");
    if (outputdir[outputdir.size()-1] != '/')
      outputdir += "/";

    std::string ofilename = outputdir + "errordeltatime.txt";
    g_log.notice() << ofilename << std::endl;
    std::ofstream ofs;
    ofs.open(ofilename.c_str(), std::ios::out);

    size_t numbaddt = 0;
    Kernel::DateAndTime t0(ws->run().getProperty("run_start")->value());

    for (size_t i = 1; i < abstimevec.size(); i++)
    {
      double tempdts = static_cast<double>(abstimevec[i].total_nanoseconds()-abstimevec[i-1].total_nanoseconds())*1.0E-9;
      double dev = (tempdts-dts)/dts;
      bool baddt = false;
      if (fabs(dev) > 0.5)
        baddt = true;

      if (baddt)
      {
        numbaddt ++;
        double deltapulsetimeSec1 = static_cast<double>(pulsetimes[i-1].total_nanoseconds()-t0.total_nanoseconds())*1.0E-9;
        double deltapulsetimeSec2 = static_cast<double>(pulsetimes[i].total_nanoseconds()-t0.total_nanoseconds())*1.0E-9;
        int index1 = static_cast<int>(deltapulsetimeSec1*60);
        int index2 = static_cast<int>(deltapulsetimeSec2*60);

        ofs << "Error d(T) = " << tempdts << "   vs   Correct d(T) = " << dts << std::endl;
        ofs << index1 << "\t\t" << pulsetimes[i-1].total_nanoseconds() << "\t\t" << orderedtofs[i-1] << std::endl;
        ofs << index2 << "\t\t" << pulsetimes[i].total_nanoseconds() << "\t\t" << orderedtofs[i] << std::endl;

      }
    }

    ofs.close();

  }

  /*
   * Output distributions in order for a better understanding of the log
   * @param dts: d(T) in second
   */
  void ProcessDasNexusLog::calDistributions(std::vector<Kernel::DateAndTime> timevec, double dts)
  {
    // 1. Calculate percent deviation vs. number of cases
    std::vector<double> x1, y1;
    for (int i=-99; i < 100; i++)
    {
      x1.push_back(static_cast<double>(i));
      y1.push_back(0);
    }

    for (size_t i = 1; i < timevec.size(); i ++)
    {
      double tempdts = static_cast<double>(timevec[i].total_nanoseconds()-timevec[i-1].total_nanoseconds())*1.0E-9;
      int index = static_cast<int>((tempdts-dts)/dts*100)+99;
      if (index < 0)
        index = 0;
      else if (index > 199)
        index = 19;
      y1[static_cast<size_t>(index)]++;
    }

    /* Skip output */
    for (size_t i = 0; i < x1.size(); i ++)
      g_log.notice() << i << "\t\t" << x1[i] << "\t\t" << y1[i] << std::endl;
     /**/

    // 2. Calculate space distribution on error cases
    std::vector<double> x2s;
    std::vector<size_t> y2;

    size_t numperiods = 100;
    int64_t spanns = timevec[timevec.size()-1].total_nanoseconds()-timevec[0].total_nanoseconds();
    double timestepsec = static_cast<double>(spanns)*1.0E-9/static_cast<double>(numperiods);

    for (size_t i = 0; i < numperiods; i++)
    {
      x2s.push_back(static_cast<double>(i)*timestepsec);
      y2.push_back(0);
    }

    size_t numbaddt = 0;
    for (size_t i = 1; i < timevec.size(); i ++)
    {
      double tempdts = static_cast<double>(timevec[i].total_nanoseconds()-timevec[i-1].total_nanoseconds())*1.0E-9;
      double dev = (tempdts-dts)/dts;
      bool baddt = false;
      if (fabs(dev) > 0.5)
        baddt = true;

      if (baddt)
      {
        numbaddt ++;
        int index = static_cast<int>(static_cast<double>(timevec[i].total_nanoseconds()-timevec[0].total_nanoseconds())*1.0E-9/timestepsec);
        if (index < 0)
          throw std::runtime_error("Impossible to have index less than 0");
        if (index >= static_cast<int>(numperiods))
        {
          g_log.error() << "Logic error X" << std::endl;
          index = static_cast<int>(numperiods)-1;
        }
        y2[static_cast<size_t>(index)] ++;
      }
    } // ENDFOR

    /* Skip
    for (size_t i = 0; i < x2s.size(); i ++)
      g_log.notice() << i << "\t\t" << x2s[i] << "\t\t" << y2[i] << std::endl;
      */
    g_log.notice() << "total number of wrong dt = " << numbaddt << std::endl;

    return;
  }

  /*
   * Check log in workspace
   */
  void ProcessDasNexusLog::checkLog(API::MatrixWorkspace_sptr ws, std::string logname)
  {
    // 1. Get log
    Kernel::Property* log = ws->run().getProperty(logname);
    if (!log)
    {
      g_log.error() << "Log " << logname << " does not exist!" << std::endl;
      throw std::invalid_argument("Non-exising log name");
    }
    Kernel::TimeSeriesProperty<double>* tslog = dynamic_cast<Kernel::TimeSeriesProperty<double>* >(log);
    if (!tslog)
    {
      g_log.error() << "Log " << logname << " is not time series log" << std::endl;
      throw std::invalid_argument("Log type error!");
    }

    // 2. Survey
    std::vector<Kernel::DateAndTime> times = tslog->timesAsVector();
    g_log.information() << "Entries of times = " << times.size() << std::endl;
    size_t countsame = 0;
    size_t countinverse = 0;
    for (size_t i=1; i<times.size(); i++)
    {
      Kernel::DateAndTime tprev = times[i-1];
      Kernel::DateAndTime tpres = times[i];
      if (tprev == tpres)
        countsame ++;
      else if (tprev > tpres)
        countinverse ++;
    }

    // 3. Output
    Kernel::DateAndTime t0(ws->run().getProperty("run_start")->value());
    Kernel::time_duration dts = times[0]-t0;
    Kernel::time_duration dtf = times[times.size()-1]-t0;
    size_t f = times.size()-1;

    g_log.information() << "Number of Equal Time Stamps    = " << countsame << std::endl;
    g_log.information() << "Number of Inverted Time Stamps = " << countinverse << std::endl;
    g_log.information() << "Run Start = " << t0.total_nanoseconds() << std::endl;
    g_log.information() << "First Log (Absolute Time, Relative Time): " << times[0].total_nanoseconds() << ", "
        << Kernel::DateAndTime::nanoseconds_from_duration(dts) << std::endl;
    g_log.information() << "Last  Log (Absolute Time, Relative Time): " << times[f].total_nanoseconds() << ", "
        << Kernel::DateAndTime::nanoseconds_from_duration(dtf) << std::endl;

    return;
  }

  /*
   * Convert DAS log to a vector of absolute time
   * @param  orderedtofs: tofs with abstimevec
   */
  void ProcessDasNexusLog::convertToAbsoluteTime(API::MatrixWorkspace_sptr ws, std::string logname,
      std::vector<Kernel::DateAndTime>& abstimevec, std::vector<double>& orderedtofs)
  {
    // 1. Get log
    Kernel::Property* log = ws->run().getProperty(logname);
    Kernel::TimeSeriesProperty<double>* tslog = dynamic_cast<Kernel::TimeSeriesProperty<double>* >(log);
    std::vector<Kernel::DateAndTime> times = tslog->timesAsVector();
    std::vector<double> values = tslog->valuesAsVector();

    // 2. Get converted
    size_t numsamepulses = 0;
    std::vector<double> tofs;
    Kernel::DateAndTime prevtime(0);

    for (size_t i = 0; i < times.size(); i ++)
    {
      Kernel::DateAndTime tnow = times[i];
      if (tnow > prevtime)
      {
        // (a) Process previous logs
        std::sort(tofs.begin(), tofs.end());
        for (size_t j=0; j<tofs.size(); j++)
        {
          Kernel::DateAndTime temptime = prevtime+static_cast<int64_t>(tofs[j]*100);
          abstimevec.push_back(temptime);
          orderedtofs.push_back(tofs[j]);
        }
        // (b) Clear
        tofs.clear();
        // (c) Update time
        prevtime = tnow;
      }
      else
      {
        numsamepulses ++;
      }
      // (d) Push the current value
      tofs.push_back(values[i]);
    } // ENDFOR
    // Clear the last
    if (tofs.size() != 0)
    {
      // (a) Process previous logs: note value is in unit of 100 nano-second
      std::sort(tofs.begin(), tofs.end());
      for (size_t j=0; j<tofs.size(); j++)
      {
        Kernel::DateAndTime temptime = prevtime+static_cast<int64_t>(tofs[j]*100);
        abstimevec.push_back(temptime);
        orderedtofs.push_back(tofs[j]);
      }
    }
    else
    {
      throw std::runtime_error("Impossible for this to happen!");
    }

    return;
  } // END Function

  /*
   * Write a certain number of log entries (from beginning) to file
   */
  void ProcessDasNexusLog::writeLogtoFile(API::MatrixWorkspace_sptr ws, std::string logname,
         size_t numentriesoutput, std::string outputfilename)
    {
      // 1. Get log
      Kernel::Property* log = ws->run().getProperty(logname);
      Kernel::TimeSeriesProperty<double>* tslog = dynamic_cast<Kernel::TimeSeriesProperty<double>* >(log);
      std::vector<Kernel::DateAndTime> times = tslog->timesAsVector();
      std::vector<double> values = tslog->valuesAsVector();

      // 2. Write out
      std::ofstream ofs;
      ofs.open(outputfilename.c_str(), std::ios::out);
      ofs << "# Absolute Time (nanosecond)\tPulse Time (nanosecond)\tTOF (ms)" << std::endl;

      Kernel::DateAndTime prevtime(0);
      std::vector<double> tofs;

      for (size_t i = 0; i < numentriesoutput; i ++)
      {
        Kernel::DateAndTime tnow = times[i];

        if (tnow > prevtime)
        {
          // (a) Process previous logs
          std::sort(tofs.begin(), tofs.end());
          for (size_t j=0; j<tofs.size(); j++)
          {
            Kernel::DateAndTime temptime = prevtime+static_cast<int64_t>(tofs[j]*100);
            ofs << temptime.total_nanoseconds() << "\t" << tnow.total_nanoseconds() << "\t"
                << tofs[j]*0.1 << std::endl;
          }
          // (b) Clear
          tofs.clear();
          // (c) Update time
          prevtime = tnow;
        }

        // (d) Push the current value
        tofs.push_back(values[i]);
      } // ENDFOR
      // Clear the last
      if (tofs.size() != 0)
      {
        // (a) Process previous logs: note value is in unit of 100 nano-second
        std::sort(tofs.begin(), tofs.end());
        for (size_t j=0; j<tofs.size(); j++)
        {
          Kernel::DateAndTime temptime = prevtime+static_cast<int64_t>(tofs[j]*100);
          ofs << temptime.total_nanoseconds() << "\t" << prevtime.total_nanoseconds() << "\t"
              << tofs[j]*0.1 << std::endl;
        }
      }
      else
      {
        throw std::runtime_error("Impossible for this to happen!");
      }

      ofs.close();

      return;
    } // END Function

} // namespace Mantid
} // namespace DataHandling