Skip to content
Snippets Groups Projects
LoadEventNexus.cpp 44.8 KiB
Newer Older
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidNexus/LoadEventNexus.h"
#include "MantidGeometry/IInstrument.h"
#include "MantidGeometry/Instrument/CompAssembly.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidKernel/ThreadPool.h"
#include "MantidKernel/FunctionTask.h"
#include "MantidAPI/FileProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/Timer.h"
#include "MantidAPI/MemoryManager.h"
#include "MantidAPI/LoadAlgorithmFactory.h" // For the DECLARE_LOADALGORITHM macro

#include <fstream>
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <Poco/File.h>
#include <Poco/Path.h>

using std::endl;
using std::map;
using std::string;
using std::vector;

using namespace ::NeXus;
using namespace Mantid::Geometry;
using namespace Mantid::DataObjects;

namespace Mantid
{
namespace NeXus
{

DECLARE_ALGORITHM(LoadEventNexus)
DECLARE_LOADALGORITHM(LoadEventNexus)

using namespace Kernel;
using namespace API;
using Geometry::Instrument;

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487




//===============================================================================================
//===============================================================================================
/** This task does the disk IO from loading the NXS file,
 * and so will be on a disk IO mutex */
class ProcessBankData : public Task
{
public:
  /**
   *
   * @param alg :: LoadEventNexus
   * @param entry_name :: name of the bank
   * @param pixelID_to_wi_map :: map pixel ID to Workspace Index
   * @param prog :: Progress reporter
   * @param scheduler :: ThreadScheduler running this task
   * @param event_id :: array with event IDs
   * @param event_time_of_flight :: array with event TOFS
   * @param numEvents :: how many events in the arrays
   * @param startAt :: index of the first event from event_index
   * @param event_index_ptr :: ptr to a vector of event index (length of # of pulses)
   * @return
   */
  ProcessBankData(LoadEventNexus * alg, std::string entry_name, IndexToIndexMap * pixelID_to_wi_map,
      Progress * prog, ThreadScheduler * scheduler,
      uint32_t * event_id, float * event_time_of_flight,
      size_t numEvents, size_t startAt, std::vector<uint64_t> * event_index_ptr)
  : Task(),
    alg(alg), entry_name(entry_name), pixelID_to_wi_map(pixelID_to_wi_map), prog(prog), scheduler(scheduler),
    event_id(event_id), event_time_of_flight(event_time_of_flight), numEvents(numEvents), startAt(startAt),
    event_index_ptr(event_index_ptr), event_index(*event_index_ptr)
  {
    // Cost is approximately proportional to the number of events to process.
    m_cost = numEvents;
  }

  //----------------------------------------------------
  // Run the data processing
  void run()
  {
    //Local tof limits
    double my_shortest_tof, my_longest_tof;
    my_shortest_tof = static_cast<double>(std::numeric_limits<uint32_t>::max()) * 0.1;
    my_longest_tof = 0.;

    prog->report(entry_name + ": precount");

    // ---- Pre-counting events per pixel ID ----
    if (alg->precount)
    {
      std::map<uint32_t, size_t> counts; // key = pixel ID, value = count
      for (size_t i=0; i < numEvents; i++)
      {
        uint32_t thisId = event_id[i];
        std::map<uint32_t, size_t>::iterator map_found = counts.find(thisId);
        if (map_found != counts.end())
        {
          map_found->second++;
        }
        else
        {
          counts[thisId] = 1; // First entry
        }
        if (alg->getCancel()) break; // User cancellation
      }

      // Now we pre-allocate (reserve) the vectors of events in each pixel counted
      std::map<uint32_t, size_t>::iterator pixID;
      for (pixID = counts.begin(); pixID != counts.end(); pixID++)
      {
        //Find the the workspace index corresponding to that pixel ID
        int wi((*pixelID_to_wi_map)[ pixID->first ]);
        // Allocate it
        alg->WS->getEventList(wi).reserve( pixID->second );
        if (alg->getCancel()) break; // User cancellation
      }
    }

    // Check for cancelled algorithm
    if (alg->getCancel())
    {  delete [] event_id;  delete [] event_time_of_flight; return;  }

    //Default pulse time (if none are found)
    Mantid::Kernel::DateAndTime pulsetime;

    // Index into the pulse array
    int pulse_i = 0;

    // And there are this many pulses
    int numPulses = static_cast<int>(alg->pulseTimes.size());
    if (numPulses > static_cast<int>(event_index.size()))
    {
      alg->getLogger().warning() << "Entry " << entry_name << "'s event_index vector is smaller than the proton_charge DAS log. This is inconsistent, so we cannot find pulse times for this entry.\n";
      //This'll make the code skip looking for any pulse times.
      pulse_i = numPulses + 1;
    }

    prog->report(entry_name + ": filling events");

    //Go through all events in the list
    for (std::size_t i = 0; i < numEvents; i++)
    {
      //------ Find the pulse time for this event index ---------
      if (pulse_i < numPulses-1)
      {
        bool breakOut = false;
        //Go through event_index until you find where the index increases to encompass the current index. Your pulse = the one before.
        while ( !((i+startAt >= event_index[pulse_i]) && (i+startAt < event_index[pulse_i+1])))
        {
          pulse_i++;
          // Check once every new pulse if you need to cancel (checking on every event might slow things down more)
          if (alg->getCancel()) breakOut = true;
          if (pulse_i >= (numPulses-1))
            break;
        }
        //Save the pulse time at this index for creating those events
        pulsetime = alg->pulseTimes[pulse_i];

        // Flag to break out of the event loop with using goto ;)
        if (breakOut)
          break;
      }

      //Create the tofevent
      double tof = static_cast<double>( event_time_of_flight[i] );
      if ((tof >= alg->filter_tof_min) && (tof <= alg->filter_tof_max))
      {
        //The event TOF passes the filter.
        TofEvent event(tof, pulsetime);

        //Find the the workspace index corresponding to that pixel ID
        int wi((*pixelID_to_wi_map)[event_id[i]]);
        // Add it to the list at that workspace index
        alg->WS->getEventList(wi).addEventQuickly( event );

        //Local tof limits
        if (tof < my_shortest_tof) { my_shortest_tof = tof;}
        if (tof > my_longest_tof) { my_longest_tof = tof;}
      }
    } //(for each event)

    //Join back up the tof limits to the global ones
    PARALLEL_CRITICAL(tof_limits)
    {
      //This is not thread safe, so only one thread at a time runs this.
      if (my_shortest_tof < alg->shortest_tof) { alg->shortest_tof = my_shortest_tof;}
      if (my_longest_tof > alg->longest_tof ) { alg->longest_tof  = my_longest_tof;}
    }

    // Free Memory
    delete [] event_id;
    delete [] event_time_of_flight;
    delete event_index_ptr;
  }


private:
  LoadEventNexus * alg;
  std::string entry_name;
  IndexToIndexMap * pixelID_to_wi_map;
  Progress * prog;
  ThreadScheduler * scheduler;
  uint32_t * event_id;
  float * event_time_of_flight;
  size_t numEvents;
  size_t startAt;
  std::vector<uint64_t> * event_index_ptr;
  std::vector<uint64_t> & event_index;
};




//===============================================================================================
//===============================================================================================
/** This task does the disk IO from loading the NXS file,
 * and so will be on a disk IO mutex */
class LoadBankFromDiskTask : public Task
{
public:
  //---------------------------------------------------------------------------------------------------
  /** Constructor
   *
   * @param entry_name :: The pathname of the bank to load
   * @param pixelID_to_wi_map :: a map where key = pixelID and value = the workpsace index to use.
   * @param prog :: an optional Progress object
   * @param ioMutex :: a mutex shared for all Disk I-O tasks
   * @param scheduler :: the ThreadScheduler that runs this task.
   */
  LoadBankFromDiskTask(LoadEventNexus * alg, std::string entry_name, IndexToIndexMap * pixelID_to_wi_map,
      Progress * prog, Mutex * ioMutex, ThreadScheduler * scheduler)
  : Task(),
    alg(alg), entry_name(entry_name), pixelID_to_wi_map(pixelID_to_wi_map), prog(prog), scheduler(scheduler)
  {
    setMutex(ioMutex);
  }


  //---------------------------------------------------------------------------------------------------
  void run()
  {

    //The vectors we will be filling
    std::vector<uint64_t> * event_index_ptr = new std::vector<uint64_t>();
    std::vector<uint64_t> & event_index = *event_index_ptr;

    // These give the limits in each file as to which events we actually load (when filtering by time).
    std::vector<int> load_start(1); //TODO: Should this be size_t?
    std::vector<int> load_size(1);

    // Data arrays
    uint32_t * event_id = NULL;
    float * event_time_of_flight = NULL;

    bool loadError = false ;

    prog->report(entry_name + ": load from disk");


    // Open the file
    ::NeXus::File file(alg->m_filename);
    try
    {
    file.openGroup("entry", "NXentry");

    //Open the bankN_event group
    file.openGroup(entry_name, "NXevent_data");

    // Get the event_index (a list of size of # of pulses giving the index in the event list for that pulse)
    file.openData("event_index");
    //Must be uint64
    if (file.getInfo().type == ::NeXus::UINT64)
      file.getData(event_index);
    else
    {
     alg->getLogger().warning() << "Entry " << entry_name << "'s event_index field is not UINT64! It will be skipped.\n";
     loadError = true;
    }
    file.closeData();

    // Look for the sign that the bank is empty
    if (event_index.size()==1)
    {
      if (event_index[0] == 0)
      {
        //One entry, only zero. This means NO events in this bank.
        loadError = true;
        alg->getLogger().debug() << "Bank " << entry_name << " is empty.\n";
      }
    }

    if (event_index.size() != alg->pulseTimes.size())
    {
      loadError = true;
      alg->getLogger().debug() << "Bank " << entry_name << " has a mismatch between the number of event_index entries and the number of pulse times.\n";
    }

    if (!loadError)
    {
      bool old_nexus_file_names = false;


      // Get the list of pixel ID's
      try
      {
        file.openData("event_id");
      }
      catch (::NeXus::Exception& )
      {
        //Older files (before Nov 5, 2010) used this field.
        file.openData("event_pixel_id");
        old_nexus_file_names = true;
      }

      // By default, use all available indices
      int start_event = 0;
      ::NeXus::Info id_info = file.getInfo();
      int stop_event = id_info.dims[0];

      //TODO: Handle the time filtering by changing the start/end offsets.
      for (size_t i=0; i < alg->pulseTimes.size(); i++)
      {
        if (alg->pulseTimes[i] >= alg->filter_time_start)
        {
          start_event = event_index[i];
          break; // stop looking
        }
      }

      for (size_t i=0; i < alg->pulseTimes.size(); i++)
      {
        if (alg->pulseTimes[i] > alg->filter_time_stop)
        {
          stop_event = event_index[i];
          break;
        }
      }

      // Make sure it is within range
      if ((stop_event > id_info.dims[0]) || (stop_event < 0))
        stop_event = id_info.dims[0];
      if (start_event < 0)
        start_event = 0;

      alg->getLogger().debug() << entry_name << ": start_event " << start_event << " stop_event "<< stop_event << std::endl;

      // These are the arguments to getSlab()
      load_start[0] = start_event;
      load_size[0] = stop_event - start_event;

      if ((load_size[0] > 0) && (load_start[0]>=0) )
      {
        // Now we allocate the required arrays
        event_id = new uint32_t[load_size[0]];
        event_time_of_flight = new float[load_size[0]];

        // Check that the required space is there in the file.
        if (id_info.dims[0] < load_size[0]+load_start[0])
        {
          alg->getLogger().warning() << "Entry " << entry_name << "'s event_id field is too small (" << id_info.dims[0]
                          << ") to load the desired data size (" << load_size[0]+load_start[0] << ").\n";
          loadError = true;
        }

        if (alg->getCancel()) loadError = true; //To allow cancelling the algorithm

        if (!loadError)
        {
          //Must be uint32
          if (id_info.type == ::NeXus::UINT32)
            file.getSlab(event_id, load_start, load_size);
          else
          {
            alg->getLogger().warning() << "Entry " << entry_name << "'s event_id field is not UINT32! It will be skipped.\n";
            loadError = true;
          }
          file.closeData();
        }

        if (alg->getCancel()) loadError = true; //To allow cancelling the algorithm

        if (!loadError)
        {
          // Get the list of event_time_of_flight's
          if (!old_nexus_file_names)
            file.openData("event_time_offset");
          else
            file.openData("event_time_of_flight");

          // Check that the required space is there in the file.
          ::NeXus::Info tof_info = file.getInfo();
          if (tof_info.dims[0] < load_size[0]+load_start[0])
          {
            alg->getLogger().warning() << "Entry " << entry_name << "'s event_time_offset field is too small to load the desired data.\n";
            loadError = true;
          }

          //Check that the type is what it is supposed to be
          if (tof_info.type == ::NeXus::FLOAT32)
            file.getSlab(event_time_of_flight, load_start, load_size);
          else
          {
            alg->getLogger().warning() << "Entry " << entry_name << "'s event_time_offset field is not FLOAT32! It will be skipped.\n";
            loadError = true;
          }

          if (!loadError)
          {
            std::string units;
            file.getAttr("units", units);
            if (units != "microsecond")
            {
              alg->getLogger().warning() << "Entry " << entry_name << "'s event_time_offset field's units are not microsecond. It will be skipped.\n";
              loadError = true;
            }
            file.closeData();
          } //no error
        } //no error
      } // Size is at least 1
      else
      {
        // Found a size that was 0 or less; stop processign
        loadError=true;
      }

    } //no error

    } // try block
    catch (std::exception e)
    {
      alg->getLogger().error() << "Error while loading bank " << entry_name << ":" << std::endl;
      alg->getLogger().error() << e.what() << std::endl;
      loadError = true;
    }
    catch (...)
    {
      alg->getLogger().error() << "Unspecified error while loading bank " << entry_name << std::endl;
      loadError = true;
    }

    //Close up the file even if errors occured.
    file.closeGroup();
    file.close();

    //Abort if anything failed
    if (loadError)
    {
      prog->reportIncrement(2, entry_name + ": skipping");
      delete [] event_id;
      delete [] event_time_of_flight;
      delete event_index_ptr;
      return;
    }

    // No error? Launch a new task to process that data.
    size_t numEvents = load_size[0];
    size_t startAt = load_start[0];
    ProcessBankData * newTask = new ProcessBankData(alg, entry_name,pixelID_to_wi_map,prog,scheduler,
        event_id,event_time_of_flight, numEvents, startAt, event_index_ptr);
    scheduler->push(newTask);
  }



private:
  LoadEventNexus * alg;
  std::string entry_name;
  IndexToIndexMap * pixelID_to_wi_map;
  Progress * prog;
  ThreadScheduler * scheduler;
};







//===============================================================================================
//===============================================================================================

/// Empty default constructor
LoadEventNexus::LoadEventNexus() : IDataFileChecker()
{}

/**
 * Do a quick file type check by looking at the first 100 bytes of the file 
 *  @param filePath :: path of the file including name.
 *  @param nread :: no.of bytes read
 *  @param header :: The first 100 bytes of the file as a union
 *  @return true if the given file is of type which can be loaded by this algorithm
 */
bool LoadEventNexus::quickFileCheck(const std::string& filePath,size_t nread, const file_header& header)
{
  std::string ext = this->extension(filePath);
  // If the extension is nxs then give it a go
  if( ext.compare("nxs") == 0 ) return true;

  // If not then let's see if it is a HDF file by checking for the magic cookie
  if ( nread >= sizeof(int32_t) && (ntohl(header.four_bytes) == g_hdf_cookie) ) return true;
  return false;
}

/**
 * Checks the file by opening it and reading few lines 
 *  @param filePath :: name of the file inluding its path
 *  @return an integer value how much this algorithm can load the file 
 */
int LoadEventNexus::fileCheck(const std::string& filePath)
{
  int confidence(0);
  try
  {
	// FIXME: We need a better test
    ::NeXus::File file = ::NeXus::File(filePath);
    // Open the base group called 'entry'
    file.openGroup("entry", "NXentry");
    // If all this succeeded then we'll assume this is an SNS Event NeXus file
    confidence = 80;
  }
  catch(::NeXus::Exception&)
  {
  }
  return confidence;
}

/// Initialisation method.
void LoadEventNexus::init()
{
  //this->setWikiSummary("Loads Event NeXus (produced by the SNS) files and stores it in an [[EventWorkspace]]. Optionally, you can filter out events falling outside a range of times-of-flight and/or a time interval.");
  //this->setOptionalMessage("Loads Event NeXus (produced by the SNS) files and stores it in an EventWorkspace. Optionally, you can filter out events falling outside a range of times-of-flight and/or a time interval.");

  this->declareProperty(new FileProperty("Filename", "", FileProperty::Load, ".nxs"),
      "The name (including its full or relative path) of the Nexus file to\n"
      "attempt to load. The file extension must either be .nxs or .NXS" );

  this->declareProperty(
    new WorkspaceProperty<IEventWorkspace>("OutputWorkspace", "", Direction::Output),
    "The name of the output EventWorkspace in which to load the EventNexus file." );

  declareProperty(
      new PropertyWithValue<double>("FilterByTof_Min", EMPTY_DBL(), Direction::Input),
    "Optional: To exclude events that do not fall within a range of times-of-flight.\n"\
    "This is the minimum accepted value in microseconds." );

  declareProperty(
      new PropertyWithValue<double>("FilterByTof_Max", EMPTY_DBL(), Direction::Input),
    "Optional: To exclude events that do not fall within a range of times-of-flight.\n"\
    "This is the maximum accepted value in microseconds." );

  declareProperty(
      new PropertyWithValue<double>("FilterByTime_Start", EMPTY_DBL(), Direction::Input),
    "Optional: To only include events after the provided start time, in seconds (relative to the start of the run).");

  declareProperty(
      new PropertyWithValue<double>("FilterByTime_Stop", EMPTY_DBL(), Direction::Input),
    "Optional: To only include events before the provided stop time, in seconds (relative to the start of the run).");

  declareProperty(
      new PropertyWithValue<string>("BankName", "", Direction::Input),
    "Optional: To only include events from one bank. Any bank whose name does not match the given string will have no events.");

  declareProperty(
      new PropertyWithValue<bool>("SingleBankPixelsOnly", true, Direction::Input),
    "Optional: Only applies if you specified a single bank to load with BankName.\n"
    "Only pixels in the specified bank will be created if true; all of the instrument's pixels will be created otherwise.");

  declareProperty(
      new PropertyWithValue<bool>("LoadMonitors", false, Direction::Input),
      "Load the monitors from the file (optional, default False).");
//
//  declareProperty(
//      new PropertyWithValue<bool>("LoadLogs", true, Direction::Input),
//      "Load the sample logs from the file (optional, default True).");

  declareProperty(
      new PropertyWithValue<bool>("Precount", false, Direction::Input),
      "Pre-count the number of events in each pixel before allocating memory (optional, default False). \n"
      "This can significantly reduce memory use and memory fragmentation; it may also speed up loading.");
}



//------------------------------------------------------------------------------------------------
/** Executes the algorithm. Reading in the file and creating and populating
 *  the output workspace
 */
void LoadEventNexus::exec()
{
  // Retrieve the filename from the properties
  m_filename = getPropertyValue("Filename");

  precount = getProperty("Precount");

  //loadlogs = getProperty("LoadLogs");
  loadlogs = true;

  //Get the limits to the filter
  filter_tof_min = getProperty("FilterByTof_Min");
  filter_tof_max = getProperty("FilterByTof_Max");
  if ( (filter_tof_min == EMPTY_DBL()) ||  (filter_tof_max == EMPTY_DBL()))
  {
    //Nothing specified. Include everything
    filter_tof_min = -1e20;
    filter_tof_max = +1e20;
  }
  else if ( (filter_tof_min != EMPTY_DBL()) ||  (filter_tof_max != EMPTY_DBL()))
  {
    //Both specified. Keep these values
  }
  else
    throw std::invalid_argument("You must specify both the min and max of time of flight to filter, or neither!");

  // Check to see if the monitors need to be loaded later
  bool load_monitors = this->getProperty("LoadMonitors");

  // Create the output workspace
  WS = EventWorkspace_sptr(new EventWorkspace());

  //Make sure to initialize.
  //   We can use dummy numbers for arguments, for event workspace it doesn't matter
  WS->initialize(1,1,1);

  // Set the units
  WS->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
  WS->setYUnit("Counts");

  //Initialize progress reporting.
  int reports = 4;
  if (load_monitors)
    reports++;
  Progress prog(this,0.0,0.3,  reports);


  if (loadlogs)
  {
    // --------------------- Load DAS Logs -----------------
    prog.report("Loading DAS logs");
    //The pulse times will be empty if not specified in the DAS logs.
    pulseTimes.clear();
    IAlgorithm_sptr loadLogs = createSubAlgorithm("LoadLogsFromSNSNexus");

    // Now execute the sub-algorithm. Catch and log any error, but don't stop.
    try
    {
      g_log.information() << "Loading logs from NeXus file..." << endl;
      loadLogs->setPropertyValue("Filename", m_filename);
      loadLogs->setProperty<MatrixWorkspace_sptr> ("Workspace", WS);
      loadLogs->execute();

      //If successful, we can try to load the pulse times
      Kernel::TimeSeriesProperty<double> * log = dynamic_cast<Kernel::TimeSeriesProperty<double> *>( WS->mutableRun().getProperty("proton_charge") );
      std::vector<Kernel::DateAndTime> temp = log->timesAsVector();
      for (size_t i =0; i < temp.size(); i++)
        pulseTimes.push_back( temp[i] );

      // Use the first pulse as the run_start time.
        // Find the first pulse after 1991
        DateAndTime run_start(0.0, 0.0);
        DateAndTime reference("1991-01-01");
        size_t i = 0;
        while ((run_start < reference) && i < temp.size())
        {
          run_start = temp[i];
          i++;
        }

        // add the start of the run as a ISO8601 date/time string. The start = first non-zero time.
        // (this is used in LoadInstrumentHelper to find the right instrument file to use).
        WS->mutableRun().addProperty("run_start", run_start.to_ISO8601_string(), true );
      }
    }
    catch (...)
    {
      g_log.error() << "Error while loading Logs from SNS Nexus. Some sample logs may be missing." << std::endl;
    }
  }
  else
  {
    g_log.information() << "Skipping the loading of sample logs!" << endl;
  }
  prog.report("Loading instrument");

  //Load the instrument
  runLoadInstrument(m_filename, WS);

  if (!this->instrument_loaded_correctly)
      throw std::runtime_error("Instrument was not initialized correctly! Loading cannot continue.");

  if (load_monitors)
  {
    prog.report("Loading monitors");
    this->runLoadMonitors();
  }

  // top level file information
  ::NeXus::File file(m_filename);

  //Start with the base entry
  file.openGroup("entry", "NXentry");

  //Now we want to go through all the bankN_event entries
  map<string, string> entries = file.getEntries();
  std::vector<string> bankNames;

  map<string,string>::const_iterator it = entries.begin();
  for (; it != entries.end(); it++)
  {
    std::string entry_name(it->first);
    std::string entry_class(it->second);
    if ((entry_class == "NXevent_data"))
    {
      bankNames.push_back( entry_name );
    }
  }

  //Close up the file
  file.closeGroup();
  file.close();

  // --------- Loading only one bank ----------------------------------
  std::string onebank = getProperty("BankName");
  bool doOneBank = (onebank != "");
  bool SingleBankPixelsOnly = getProperty("SingleBankPixelsOnly");
  if (doOneBank)
  {
    bool foundIt = false;
    for (std::vector<string>::iterator it=bankNames.begin(); it!= bankNames.end(); it++)
      if (*it == ( onebank + "_events") )
        foundIt = true;
    if (!foundIt)
    {
      throw std::invalid_argument("No entry named '" + onebank + "_events'" + " was found in the .NXS file.\n");
    }
    bankNames.clear();
    bankNames.push_back( onebank + "_events" );
  }

  // Delete the output workspace name if it existed
  std::string outName = getPropertyValue("OutputWorkspace");
  if (AnalysisDataService::Instance().doesExist(outName))
    AnalysisDataService::Instance().remove( outName );

  prog.report("Initializing all pixels");

  //----------------- Pad Empty Pixels -------------------------------
  if (!this->instrument_loaded_correctly)
  {
    g_log.warning() << "Warning! Cannot pad empty pixels, since the instrument geometry did not load correctly or was not specified. Sorry!\n";
  }
  else
  {
    Timer tim1;
    //Pad pixels; parallel flag is off because it is actually slower :(
    if (doOneBank && SingleBankPixelsOnly)
    {
      // ---- Pad a pixel for each detector inside the bank -------
      std::vector<IDetector_sptr> dets;
      // Get the vector of contained detectors
      WS->getInstrument()->getDetectorsInBank(dets, onebank);
      if (dets.size() > 0)
        // Make an event list for each.
        for(size_t wi=0; wi < dets.size(); wi++)
          WS->getOrAddEventList(wi).addDetectorID( dets[wi]->getID() );
        throw std::runtime_error("Could not find the bank named " + onebank + " as a component assembly in the instrument tree; or it did not contain any detectors.");
    }
    else
    {
      WS->padPixels( false );
    }
    //std::cout << tim1.elapsed() << "seconds to pad pixels.\n";
  }


  // -- Time filtering --
  double filter_time_start_sec, filter_time_stop_sec;
  filter_time_start_sec = getProperty("FilterByTime_Start");
  filter_time_stop_sec = getProperty("FilterByTime_Stop");

  //Default to ALL pulse times
  bool is_time_filtered = false;
  filter_time_start = Kernel::DateAndTime::minimum();
  filter_time_stop = Kernel::DateAndTime::maximum();

  if (pulseTimes.size() > 0)
  {
    //If not specified, use the limits of doubles. Otherwise, convert from seconds to absolute PulseTime
    if (filter_time_start_sec != EMPTY_DBL())
    {
      filter_time_start = pulseTimes[0] + filter_time_start_sec;
      is_time_filtered = true;
    }

    if (filter_time_stop_sec != EMPTY_DBL())
    {
      filter_time_stop = pulseTimes[0] + filter_time_stop_sec;
      is_time_filtered = true;
    }

    //Silly values?
    if (filter_time_stop < filter_time_start)
      throw std::invalid_argument("Your filter for time's Stop value is smaller than the Start value.");
  }


  //Count the limits to time of flight
  shortest_tof = static_cast<double>(std::numeric_limits<uint32_t>::max()) * 0.1;
  longest_tof = 0.;

  Progress * prog2 = new Progress(this,0.3,1.0, bankNames.size()*3);

  //This map will be used to find the workspace index
  IndexToIndexMap * pixelID_to_wi_map = WS->getDetectorIDToWorkspaceIndexMap(false);

//  // Now go through each bank.
//  // This'll be parallelized - but you can't run it in parallel if you couldn't pad the pixels.
//  PARALLEL_FOR_IF( (this->instrument_loaded_correctly) )
//  for (int i=0; i < static_cast<int>(bankNames.size()); i++)
//  {
//    PARALLEL_START_INTERUPT_REGION
//    this->loadBankEventData(bankNames[i], pixelID_to_wi_map, prog2);
//    PARALLEL_END_INTERUPT_REGION
//  }
//  PARALLEL_CHECK_INTERUPT_REGION
//  delete prog2;



//  // Create a thread pool with scheduler
//  ThreadPool pool(new ThreadSchedulerLargestCost());
//  for (int i=0; i < static_cast<int>(bankNames.size()); i++)
//  {
//    double cost = 1.0;
//    pool.schedule( new FunctionTask(boost::bind(&LoadEventNexus::loadBankEventData, &*this, bankNames[i], pixelID_to_wi_map, prog2), cost ) );
//  }
//  // Start and end all threads
//  pool.joinAll();
//  delete prog2;

  // Make the thread pool
  ThreadScheduler * scheduler = new ThreadSchedulerLargestCost();
  ThreadPool pool(scheduler);
  Mutex * diskIOMutex = new Mutex();
  for (int i=0; i < static_cast<int>(bankNames.size()); i++)
  {
    // We make tasks for loading
    pool.schedule( new LoadBankFromDiskTask(this,bankNames[i],pixelID_to_wi_map, prog2, diskIOMutex, scheduler) );
  // Start and end all threads
  pool.joinAll();
  delete diskIOMutex;
  //Don't need the map anymore.
  delete pixelID_to_wi_map;

  if (is_time_filtered)
  {
    //Now filter out the run, using the DateAndTime type.
    WS->mutableRun().filterByTime(filter_time_start, filter_time_stop);
  }

  //Info reporting
  g_log.information() << "Read " << WS->getNumberEvents() << " events"
      << ". Shortest TOF: " << shortest_tof << " microsec; longest TOF: "
      << longest_tof << " microsec." << std::endl;


  //Now, create a default X-vector for histogramming, with just 2 bins.
  Kernel::cow_ptr<MantidVec> axis;
  MantidVec& xRef = axis.access();
  xRef.resize(2);
  xRef[0] = shortest_tof - 1; //Just to make sure the bins hold it all
  xRef[1] = longest_tof + 1;
  //Set the binning axis using this.
  WS->setAllX(axis);

  // set more properties on the workspace
  this->loadEntryMetadata("entry");

  //Save output
  this->setProperty<IEventWorkspace_sptr>("OutputWorkspace", WS);

  // Clear any large vectors to free up memory.
  this->pulseTimes.clear();

  return;
}


/** Load the run number and other meta data from the given bank */
void LoadEventNexus::loadEntryMetadata(const std::string &entry_name) {
  // Open the file
  ::NeXus::File file(m_filename);
  file.openGroup(entry_name, "NXentry");

  // get the title
  file.openData("title");
  if (file.getInfo().type == ::NeXus::CHAR) {
    string title = file.getStrData();
    if (!title.empty())
      WS->setTitle(title);
  }
  file.closeData();

  // TODO get the run number
  file.openData("run_number");
  string run("");
  if (file.getInfo().type == ::NeXus::CHAR) {
    run = file.getStrData();
  }
  if (!run.empty()) {
    WS->mutableRun().addProperty("run_number", run);
  }
  file.closeData();

  // close the file
  file.close();
}


//------------------------------------------------------------------------------------------------
/**
 * Load one of the banks' event data from the nexus file
 * @param entry_name :: The pathname of the bank to load
 * @param pixelID_to_wi_map :: a map where key = pixelID and value = the workpsace index to use.
void LoadEventNexus::loadBankEventData_OBSOLETE(const std::string entry_name, IndexToIndexMap * pixelID_to_wi_map, Progress * prog)
{
  //Local tof limits
  double my_shortest_tof, my_longest_tof;
  my_shortest_tof = static_cast<double>(std::numeric_limits<uint32_t>::max()) * 0.1;
  my_longest_tof = 0.;


  //The vectors we will be filling
  std::vector<uint64_t> event_index;

  //std::vector<uint32_t> event_id;
  //std::vector<float> event_time_of_flight;

  // These give the limits in each file as to which events we actually load (when filtering by time).
  std::vector<int> load_start(1); //TODO: Should this be size_t?
  std::vector<int> load_size(1);

  // Data arrays
  uint32_t * event_id = NULL;
  float * event_time_of_flight = NULL;
  PARALLEL_CRITICAL(LoadEventNexus_loadBankEventData_nexus_file_access)
  {
    // Open the file
    ::NeXus::File file(m_filename);
    file.openGroup("entry", "NXentry");

    //Open the bankN_event group
    file.openGroup(entry_name, "NXevent_data");

    // Get the event_index (a list of size of # of pulses giving the index in the event list for that pulse)
    file.openData("event_index");
    //Must be uint64
    if (file.getInfo().type == ::NeXus::UINT64)
      file.getData(event_index);
    else
    {
     g_log.warning() << "Entry " << entry_name << "'s event_index field is not UINT64! It will be skipped.\n";
     loadError = true;
    }
    file.closeData();

    // Look for the sign that the bank is empty
    if (event_index.size()==1)
    {
      if (event_index[0] == 0)
      {
        //One entry, only zero. This means NO events in this bank.
        loadError = true;
        g_log.debug() << "Bank " << entry_name << " is empty.\n";