Newer
Older
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
// NScD Oak Ridge National Laboratory, European Spallation Source
// & Institut Laue - Langevin
// SPDX - License - Identifier: GPL - 3.0 +
//------------------------------------------------------------------------------------------------
// Includes
//------------------------------------------------------------------------------------------------
#include "MantidCurveFitting/Functions/MultivariateGaussianComptonProfile.h"
#include "MantidAPI/FunctionFactory.h"
#include <cmath>
namespace Mantid {
namespace CurveFitting {
namespace Functions {
using namespace CurveFitting;
DECLARE_FUNCTION(MultivariateGaussianComptonProfile)
const char *MultivariateGaussianComptonProfile::AMP_PARAM = "Intensity";
const char *MultivariateGaussianComptonProfile::SIGMA_X_PARAM = "SigmaX";
const char *MultivariateGaussianComptonProfile::SIGMA_Y_PARAM = "SigmaY";
const char *MultivariateGaussianComptonProfile::SIGMA_Z_PARAM = "SigmaZ";
const char *MultivariateGaussianComptonProfile::STEPS_ATTR = "IntegrationSteps";
/**
*/
MultivariateGaussianComptonProfile::MultivariateGaussianComptonProfile()
: ComptonProfile(), m_integrationSteps(256), m_thetaStep(0.0),
m_phiStep(0.0) {}
/**
* @returns A string containing the name of the function
*/
std::string MultivariateGaussianComptonProfile::name() const {
return "MultivariateGaussianComptonProfile";
}
/**
*/
void MultivariateGaussianComptonProfile::declareParameters() {
declareParameter(AMP_PARAM, 1.0, "Gaussian intensity parameter");
declareParameter(SIGMA_X_PARAM, 1.0, "Sigma X parameter");
declareParameter(SIGMA_Y_PARAM, 1.0, "Sigma Y parameter");
declareParameter(SIGMA_Z_PARAM, 1.0, "Sigma Z parameter");
}
/**
*/
void MultivariateGaussianComptonProfile::declareAttributes() {
ComptonProfile::declareAttributes();
declareAttribute(STEPS_ATTR, IFunction::Attribute(m_integrationSteps));
}
/**
* @param name The name of the attribute
* @param value The attribute's value
*/
void MultivariateGaussianComptonProfile::setAttribute(const std::string &name,
const Attribute &value) {
ComptonProfile::setAttribute(name, value);
if (name == STEPS_ATTR) {
int steps = value.asInt();
if (steps < 1)
throw std::runtime_error(std::string(STEPS_ATTR) +
" attribute must be positive and non-zero");
if (steps % 2 == 1)
throw std::runtime_error(std::string(STEPS_ATTR) +
" attribute must be an even number");
m_integrationSteps = steps;
m_thetaStep = M_PI / steps;
m_phiStep = (M_PI / 2.0) / steps;
}
}
/*
*/
std::vector<size_t>
MultivariateGaussianComptonProfile::intensityParameterIndices() const {
return std::vector<size_t>(1, this->parameterIndex(AMP_PARAM));
}
/**
* Fills in a column of the matrix with this mass profile, starting at the given
* index
* @param cmatrix InOut matrix whose column should be set to the mass profile
* for each active hermite polynomial
* @param start Index of the column to start on
* @param errors The data errors
* @returns The number of columns filled
*/
size_t MultivariateGaussianComptonProfile::fillConstraintMatrix(
Kernel::DblMatrix &cmatrix, const size_t start,
const HistogramData::HistogramE &errors) const {
std::vector<double> result(ySpace().size());
this->massProfile(result.data(), ySpace().size());
std::transform(result.begin(), result.end(), errors.begin(), result.begin(),
std::divides<double>());
cmatrix.setColumn(start, result);
return 1;
}
/**
* @param result A pre-sized output array that should be filled with the
* results
* @param nData The size of the array
*/
void MultivariateGaussianComptonProfile::massProfile(double *result,
const size_t nData) const {
const double amplitude(getParameter(AMP_PARAM));
this->massProfile(result, nData, amplitude);
}
void MultivariateGaussianComptonProfile::massProfile(
double *result, const size_t nData, const double amplitude) const {
std::vector<double> s2Cache;
buildS2Cache(s2Cache);
const double sigmaX(getParameter(SIGMA_X_PARAM));
const double sigmaY(getParameter(SIGMA_Y_PARAM));
const double sigmaZ(getParameter(SIGMA_Z_PARAM));
(1.0 / (sqrt(2.0 * M_PI) * sigmaX * sigmaY * sigmaZ)) * (2.0 / M_PI);
const double prefactorFSE =
(pow(sigmaX, 4) + pow(sigmaY, 4) + pow(sigmaZ, 4)) /
(9.0 * sqrt(2.0 * M_PI) * sigmaX * sigmaY * sigmaZ);
for (size_t i = 0; i < nData; i++) {
const double y(yspace[i]);
const double q(modq[i]);
double j = prefactorJ * calculateJ(s2Cache, y);
double fse = (prefactorFSE / q) * calculateFSE(s2Cache, y);
result[i] = amplitude * (j + fse);
/**
* @brief Calculates the mass profile
* @param s2Cache Cache of S2 values
* @param y Y value
* @return Mass profile
*/
double
MultivariateGaussianComptonProfile::calculateJ(std::vector<double> s2Cache,
double y) const {
double sum(0.0);
for (int i = 0; i < m_integrationSteps; i++) {
for (int j = 0; j < m_integrationSteps; j++) {
double s2 = s2Cache[i * m_integrationSteps + j];
sum += intervalCoeff(i, j) * calculateIntegrandJ(s2, y);
}
}
double fact = (m_thetaStep * m_phiStep) / 9.0;
return fact * sum;
}
/**
* @brief Calculates the A3 FSE correction.
* @param s2Cache Cache of S2 values
* @param y Y value
* @return Additive FSE correction
*/
double
MultivariateGaussianComptonProfile::calculateFSE(std::vector<double> s2Cache,
double y) const {
double sum(0.0);
for (int i = 0; i < m_integrationSteps; i++) {
for (int j = 0; j < m_integrationSteps; j++) {
double s2 = s2Cache[i * m_integrationSteps + j];
sum += intervalCoeff(i, j) * calculateIntegrandFSE(s2, y);
double fact = (m_thetaStep * m_phiStep) / 9.0;
/**
* @brief Obtains a cell of the coefficient grid for Simpson's integration in
* 2D.
* @param i X index
* @param j Y index
* @return Coefficient
*
* [ 1 4 2 4 1 ]
* [ 4 16 8 16 4 ]
* [ 2 8 4 8 2 ]
* [ 4 16 8 16 4 ]
* [ 1 4 2 4 1 ]
*/
double MultivariateGaussianComptonProfile::intervalCoeff(int i, int j) const {
double a = 1.0;
double b = 1.0;
if (i > 0 && i <= m_integrationSteps)
a = i % 2 == 1 ? 4 : 2;
if (j > 0 && j <= m_integrationSteps)
b = j % 2 == 1 ? 4 : 2;
}
/**
* @brief Caches values of S2 for all theta and phi in integration range.
* @param s2Cache Reference to vector to cache S2 values in
*/
void MultivariateGaussianComptonProfile::buildS2Cache(
std::vector<double> &s2Cache) const {
s2Cache.clear();
double sigmaX2(getParameter(SIGMA_X_PARAM));
double sigmaY2(getParameter(SIGMA_Y_PARAM));
double sigmaZ2(getParameter(SIGMA_Z_PARAM));
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
sigmaX2 *= sigmaX2;
sigmaY2 *= sigmaY2;
sigmaZ2 *= sigmaZ2;
for (int i = 0; i <= m_integrationSteps; i++) {
const double theta = m_thetaStep * i;
for (int j = 0; j <= m_integrationSteps; j++) {
const double phi = m_phiStep * j;
double sinTheta2 = pow(sin(theta), 2);
double sinPhi2 = pow(sin(phi), 2);
double cosTheta2 = pow(cos(theta), 2);
double cosPhi2 = pow(cos(phi), 2);
double x = (sinTheta2 * cosPhi2) / sigmaX2;
double y = (sinTheta2 * sinPhi2) / sigmaY2;
double z = cosTheta2 / sigmaZ2;
double s2 = x + y + z;
s2 = 1.0 / s2;
s2Cache.push_back(s2);
}
}
}
} // namespace Functions
} // namespace CurveFitting
} // namespace Mantid