Newer
Older
#include "MantidQtCustomInterfaces/Reflectometry/GenericDataProcessorPresenter.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidAPI/NotebookWriter.h"
#include "MantidAPI/TableRow.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/Strings.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/Utils.h"
#include "MantidKernel/make_unique.h"
#include "MantidQtCustomInterfaces/ParseKeyValueString.h"
#include "MantidQtCustomInterfaces/ProgressableView.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorAlgorithmView.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorAppendRowCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorClearSelectedCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorCopySelectedCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorCutSelectedCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorDeleteRowCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorExpandCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorExportTableCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorGenerateNotebook.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorGroupRowsCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorImportTableCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorNewTableCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorOpenTableCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorOptionsCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorPasteSelectedCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorPlotGroupCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorPlotRowCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorPrependRowCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorProcessCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorSaveTableAsCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorSaveTableCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorSeparatorCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/DataProcessorWorkspaceCommand.h"
#include "MantidQtCustomInterfaces/Reflectometry/ProgressPresenter.h"
#include "MantidQtCustomInterfaces/Reflectometry/QDataProcessorTableModel.h"
#include "MantidQtCustomInterfaces/Reflectometry/QtDataProcessorOptionsDialog.h"
Raquel Alvarez Banos
committed
#include "MantidQtCustomInterfaces/Reflectometry/WorkspaceReceiver.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include "MantidQtMantidWidgets/AlgorithmHintStrategy.h"
#include <boost/regex.hpp>
#include <boost/tokenizer.hpp>
#include <fstream>
#include <sstream>
using namespace Mantid::API;
using namespace Mantid::Geometry;
using namespace Mantid::Kernel;
using namespace MantidQt::MantidWidgets;
namespace {
void validateModel(ITableWorkspace_sptr model) {
if (!model)
throw std::runtime_error("Null pointer");
if (model->columnCount() != 9)
throw std::runtime_error("Selected table has the incorrect number of "
"columns (9) to be used as a reflectometry "
"table.");
try {
model->String(0, 0);
model->String(0, 1);
model->String(0, 2);
model->String(0, 3);
model->String(0, 4);
model->String(0, 5);
model->Double(0, 6);
model->Int(0, 7);
model->String(0, 8);
} catch (const std::runtime_error &) {
throw std::runtime_error("Selected table does not meet the specifications "
"to become a model for this interface.");
}
}
bool isValidModel(Workspace_sptr model) {
try {
validateModel(boost::dynamic_pointer_cast<ITableWorkspace>(model));
} catch (...) {
return false;
}
return true;
}
ITableWorkspace_sptr createWorkspace() {
ITableWorkspace_sptr ws = WorkspaceFactory::Instance().createTable();
auto colRuns = ws->addColumn("str", "Run(s)");
auto colTheta = ws->addColumn("str", "ThetaIn");
auto colTrans = ws->addColumn("str", "TransRun(s)");
auto colQmin = ws->addColumn("str", "Qmin");
auto colQmax = ws->addColumn("str", "Qmax");
auto colDqq = ws->addColumn("str", "dq/q");
auto colScale = ws->addColumn("double", "Scale");
auto colStitch = ws->addColumn("int", "StitchGroup");
auto colOptions = ws->addColumn("str", "Options");
colRuns->setPlotType(0);
colTheta->setPlotType(0);
colTrans->setPlotType(0);
colQmin->setPlotType(0);
colQmax->setPlotType(0);
colDqq->setPlotType(0);
colScale->setPlotType(0);
colStitch->setPlotType(0);
colOptions->setPlotType(0);
return ws;
}
ITableWorkspace_sptr createDefaultWorkspace() {
// Create a blank workspace with one line and set the scale column to 1
auto ws = createWorkspace();
ws->appendRow();
ws->Double(0, MantidQt::CustomInterfaces::ReflTableSchema::COL_SCALE) = 1.0;
return ws;
}
}
namespace MantidQt {
namespace CustomInterfaces {
Raquel Alvarez Banos
committed
/**
* Constructor
* @param tableView : [input] The view this presenter is going to handle
* @param progressView : [input] The progress view this presenter is going to
* handle
* @param dataProcessorAlgorithm : [input] The data processor algorithm's name as
* a string
* @param blacklist : [input] The set of blacklisted properties
*/
GenericDataProcessorPresenter::GenericDataProcessorPresenter(
Raquel Alvarez Banos
committed
DataProcessorAlgorithmView *tableView, ProgressableView *progressView,
const std::string &dataProcessorAlgorithm,
const std::set<std::string> &blacklist)
: WorkspaceObserver(), m_view(tableView), m_progressView(progressView),
Raquel Alvarez Banos
committed
m_dataProcessorAlg(dataProcessorAlgorithm), m_tableDirty(false) {
// Initialise options
initOptions();
// Populate an initial list of valid tables to open, and subscribe to the ADS
// to keep it up to date
Mantid::API::AnalysisDataServiceImpl &ads =
Mantid::API::AnalysisDataService::Instance();
auto items = ads.getObjectNames();
for (auto const &name : items) {
Workspace_sptr ws = ads.retrieve(name);
if (isValidModel(ws))
m_workspaceList.insert(name);
}
observeAdd();
observePostDelete();
observeRename();
observeADSClear();
observeAfterReplace();
m_view->setTableList(m_workspaceList);
// Provide autocompletion hints for the options column. We use the algorithm's
// properties minus
// those we blacklist. We blacklist any useless properties or ones we're
// handling that the user
// should'nt touch.
Raquel Alvarez Banos
committed
IAlgorithm_sptr alg = AlgorithmManager::Instance().create(m_dataProcessorAlg);
m_view->setOptionsHintStrategy(new AlgorithmHintStrategy(alg, blacklist));
// Start with a blank table
newTable();
}
GenericDataProcessorPresenter::~GenericDataProcessorPresenter() {}
/**
* Finds the first unused group id
*/
int GenericDataProcessorPresenter::getUnusedGroup(
std::set<int> ignoredRows) const {
std::set<int> usedGroups;
// Scan through all the rows, working out which group ids are used
for (int idx = 0; idx < m_model->rowCount(); ++idx) {
if (ignoredRows.find(idx) != ignoredRows.end())
continue;
// This is an unselected row. Add it to the list of used group ids
usedGroups.insert(
m_model->data(m_model->index(idx, ReflTableSchema::COL_GROUP)).toInt());
}
int groupId = 0;
// While the group id is one of the used ones, increment it by 1
while (usedGroups.find(groupId) != usedGroups.end())
groupId++;
return groupId;
}
/**
Process selected rows
*/
void GenericDataProcessorPresenter::process() {
if (m_model->rowCount() == 0) {
m_view->giveUserWarning("Cannot process an empty Table", "Warning");
return;
}
std::set<int> rows = m_view->getSelectedRows();
if (rows.empty()) {
if (m_options["WarnProcessAll"].toBool()) {
// Does the user want to abort?
if (!m_view->askUserYesNo(
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"This will process all rows in the table. Continue?",
"Process all rows?"))
return;
}
// They want to process all rows, so populate rows with every index in the
// model
for (int idx = 0; idx < m_model->rowCount(); ++idx)
rows.insert(idx);
}
// Map group numbers to the set of rows in that group we want to process
std::map<int, std::set<int>> groups;
for (auto it = rows.begin(); it != rows.end(); ++it)
groups[m_model->data(m_model->index(*it, ReflTableSchema::COL_GROUP))
.toInt()]
.insert(*it);
// Check each group and warn if we're only partially processing it
for (auto gIt = groups.begin(); gIt != groups.end(); ++gIt) {
const int &groupId = gIt->first;
const std::set<int> &groupRows = gIt->second;
// Are we only partially processing a group?
if (groupRows.size() < numRowsInGroup(gIt->first) &&
m_options["WarnProcessPartialGroup"].toBool()) {
std::stringstream err;
err << "You have only selected " << groupRows.size() << " of the ";
err << numRowsInGroup(groupId) << " rows in group " << groupId << ".";
err << " Are you sure you want to continue?";
if (!m_view->askUserYesNo(err.str(), "Continue Processing?"))
return;
}
}
if (!rowsValid(rows)) {
return;
}
if (!processGroups(groups, rows)) {
return;
}
// If "Output Notebook" checkbox is checked then create an ipython notebook
if (m_view->getEnableNotebook()) {
saveNotebook(groups, rows);
}
}
/**
Display a dialog to choose save location for notebook, then save the notebook
there
@param groups : groups of rows to stitch
@param rows : rows selected for processing
*/
void GenericDataProcessorPresenter::saveNotebook(
std::map<int, std::set<int>> groups, std::set<int> rows) {
std::string filename = m_view->requestNotebookPath();
if (filename == "") {
return;
}
auto notebook = Mantid::Kernel::make_unique<DataProcessorGenerateNotebook>(
m_wsName, m_model, m_view->getProcessInstrument(),
ReflTableSchema::COL_RUNS, ReflTableSchema::COL_TRANSMISSION,
ReflTableSchema::COL_OPTIONS, ReflTableSchema::COL_ANGLE,
ReflTableSchema::COL_QMIN, ReflTableSchema::COL_QMAX,
ReflTableSchema::COL_DQQ, ReflTableSchema::COL_SCALE,
ReflTableSchema::COL_GROUP);
std::string generatedNotebook = notebook->generateNotebook(groups, rows);
std::ofstream file(filename.c_str(), std::ofstream::trunc);
file << generatedNotebook;
file.flush();
file.close();
}
Raquel Alvarez Banos
committed
/**
Stitches the workspaces created by the given rows together.
@param rows : the list of rows
*/
void GenericDataProcessorPresenter::stitchRows(std::set<int> rows) {
Raquel Alvarez Banos
committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// If we can get away with doing nothing, do.
if (rows.size() < 2)
return;
// Properties for Stitch1DMany
std::vector<std::string> workspaceNames;
std::vector<std::string> runs;
std::vector<double> params;
std::vector<double> startOverlaps;
std::vector<double> endOverlaps;
// Go through each row and prepare the properties
for (auto rowIt = rows.begin(); rowIt != rows.end(); ++rowIt) {
const std::string runStr =
m_model->data(m_model->index(*rowIt, ReflTableSchema::COL_RUNS))
.toString()
.toStdString();
const double qmin =
m_model->data(m_model->index(*rowIt, ReflTableSchema::COL_QMIN))
.toDouble();
const double qmax =
m_model->data(m_model->index(*rowIt, ReflTableSchema::COL_QMAX))
.toDouble();
Workspace_sptr runWS = prepareRunWorkspace(runStr);
if (runWS) {
const std::string runNo = getRunNumber(runWS);
if (AnalysisDataService::Instance().doesExist("IvsQ_" + runNo)) {
runs.push_back(runNo);
workspaceNames.emplace_back("IvsQ_" + runNo);
}
}
startOverlaps.push_back(qmin);
endOverlaps.push_back(qmax);
}
double dqq =
m_model->data(m_model->index(*(rows.begin()), ReflTableSchema::COL_DQQ))
.toDouble();
// params are qmin, -dqq, qmax for the final output
params.push_back(
*std::min_element(startOverlaps.begin(), startOverlaps.end()));
params.push_back(-dqq);
params.push_back(*std::max_element(endOverlaps.begin(), endOverlaps.end()));
// startOverlaps and endOverlaps need to be slightly offset from each other
// See usage examples of Stitch1DMany to see why we discard first qmin and
// last qmax
startOverlaps.erase(startOverlaps.begin());
endOverlaps.pop_back();
std::string outputWSName = "IvsQ_" + boost::algorithm::join(runs, "_");
// If the previous stitch result is in the ADS already, we'll need to remove
// it.
// If it's a group, we'll get an error for trying to group into a used group
// name
if (AnalysisDataService::Instance().doesExist(outputWSName))
AnalysisDataService::Instance().remove(outputWSName);
IAlgorithm_sptr algStitch =
AlgorithmManager::Instance().create("Stitch1DMany");
algStitch->initialize();
algStitch->setProperty("InputWorkspaces", workspaceNames);
algStitch->setProperty("OutputWorkspace", outputWSName);
algStitch->setProperty("Params", params);
algStitch->setProperty("StartOverlaps", startOverlaps);
algStitch->setProperty("EndOverlaps", endOverlaps);
algStitch->execute();
if (!algStitch->isExecuted())
throw std::runtime_error("Failed to run Stitch1DMany on IvsQ workspaces.");
}
/**
Process stitch groups
@param rows : rows in the model
@param groups : groups of rows to stitch
@returns true if successful, otherwise false
*/
bool GenericDataProcessorPresenter::processGroups(
std::map<int, std::set<int>> groups, std::set<int> rows) {
int progress = 0;
// Each group and each row within count as a progress step.
const int maxProgress = (int)(rows.size() + groups.size());
ProgressPresenter progressReporter(progress, maxProgress, maxProgress,
m_progressView);
for (auto gIt = groups.begin(); gIt != groups.end(); ++gIt) {
const std::set<int> groupRows = gIt->second;
// Reduce each row
for (auto rIt = groupRows.begin(); rIt != groupRows.end(); ++rIt) {
try {
reduceRow(*rIt);
progressReporter.report();
} catch (std::exception &ex) {
const std::string rowNo =
Mantid::Kernel::Strings::toString<int>(*rIt + 1);
const std::string message =
"Error encountered while processing row " + rowNo + ":\n";
m_view->giveUserCritical(message + ex.what(), "Error");
progressReporter.clear();
return false;
}
}
try {
stitchRows(groupRows);
progressReporter.report();
} catch (std::exception &ex) {
const std::string groupNo =
Mantid::Kernel::Strings::toString<int>(gIt->first);
const std::string message =
"Error encountered while stitching group " + groupNo + ":\n";
m_view->giveUserCritical(message + ex.what(), "Error");
progressReporter.clear();
return false;
}
}
return true;
}
/**
Validate rows.
@param rows : Rows in the model to validate
@returns true if all rows are valid and false otherwise
*/
bool GenericDataProcessorPresenter::rowsValid(std::set<int> rows) {
for (auto it = rows.begin(); it != rows.end(); ++it) {
try {
validateRow(*it);
autofillRow(*it);
} catch (std::exception &ex) {
// Allow two theta to be blank
if (ex.what() ==
std::string("Value for two theta could not be found in log."))
continue;
const std::string rowNo = Mantid::Kernel::Strings::toString<int>(*it + 1);
m_view->giveUserCritical(
"Error found in row " + rowNo + ":\n" + ex.what(), "Error");
return false;
}
}
return true;
}
/**
Validate a row.
If a row passes validation, it is ready to be autofilled, but
not necessarily ready for processing.
@param rowNo : The row in the model to validate
@throws std::invalid_argument if the row fails validation
*/
void GenericDataProcessorPresenter::validateRow(int rowNo) const {
if (rowNo >= m_model->rowCount())
throw std::invalid_argument("Invalid row");
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_RUNS))
.toString()
.isEmpty())
throw std::invalid_argument("Run column may not be empty.");
}
/**
Autofill a row
@param rowNo : The row in the model to autofill
@throws std::runtime_error if the row could not be auto-filled
*/
void GenericDataProcessorPresenter::autofillRow(int rowNo) {
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
if (rowNo >= m_model->rowCount())
throw std::runtime_error("Invalid row");
const std::string runStr =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_RUNS))
.toString()
.toStdString();
auto runWS = prepareRunWorkspace(runStr);
auto runMWS = boost::dynamic_pointer_cast<MatrixWorkspace>(runWS);
auto runWSG = boost::dynamic_pointer_cast<WorkspaceGroup>(runWS);
// If we've got a workspace group, use the first workspace in it
if (!runMWS && runWSG)
runMWS = boost::dynamic_pointer_cast<MatrixWorkspace>(runWSG->getItem(0));
if (!runMWS)
throw std::runtime_error("Could not convert " + runWS->name() +
" to a MatrixWorkspace.");
// Fetch two theta from the log if needed
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_ANGLE))
.toString()
.isEmpty()) {
Property *logData = NULL;
// First try TwoTheta
try {
logData = runMWS->mutableRun().getLogData("Theta");
} catch (std::exception &) {
throw std::runtime_error(
"Value for two theta could not be found in log.");
}
auto logPWV = dynamic_cast<const PropertyWithValue<double> *>(logData);
auto logTSP = dynamic_cast<const TimeSeriesProperty<double> *>(logData);
double thetaVal;
if (logPWV)
thetaVal = *logPWV;
else if (logTSP && logTSP->realSize() > 0)
thetaVal = logTSP->lastValue();
else
throw std::runtime_error(
"Value for two theta could not be found in log.");
// Update the model
if (m_options["RoundAngle"].toBool())
thetaVal =
Utils::roundToDP(thetaVal, m_options["RoundAnglePrecision"].toInt());
m_model->setData(m_model->index(rowNo, ReflTableSchema::COL_ANGLE),
thetaVal);
m_tableDirty = true;
}
// If we need to calculate the resolution, do.
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_DQQ))
.toString()
.isEmpty()) {
IAlgorithm_sptr calcResAlg =
AlgorithmManager::Instance().create("CalculateResolution");
calcResAlg->setProperty("Workspace", runMWS);
calcResAlg->setProperty(
"TwoTheta",
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_ANGLE))
.toString()
.toStdString());
calcResAlg->execute();
if (!calcResAlg->isExecuted())
throw std::runtime_error("CalculateResolution failed. Please manually "
"enter a value in the dQ/Q column.");
// Update the model
double dqqVal = calcResAlg->getProperty("Resolution");
if (m_options["RoundDQQ"].toBool())
dqqVal = Utils::roundToDP(dqqVal, m_options["RoundDQQPrecision"].toInt());
m_model->setData(m_model->index(rowNo, ReflTableSchema::COL_DQQ), dqqVal);
m_tableDirty = true;
}
}
/**
Extracts the run number of a workspace
@param ws : The workspace to fetch the run number from
@returns The run number of the workspace
*/
std::string
GenericDataProcessorPresenter::getRunNumber(const Workspace_sptr &ws) {
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// If we can, use the run number from the workspace's sample log
MatrixWorkspace_sptr mws = boost::dynamic_pointer_cast<MatrixWorkspace>(ws);
if (mws) {
try {
const Property *runProperty = mws->mutableRun().getLogData("run_number");
auto runNumber =
dynamic_cast<const PropertyWithValue<std::string> *>(runProperty);
if (runNumber)
return *runNumber;
} catch (Mantid::Kernel::Exception::NotFoundError &) {
// We'll just fall back to looking at the workspace's name
}
}
// Okay, let's see what we can get from the workspace's name
const std::string wsName = ws->name();
// Matches TOF_13460 -> 13460
boost::regex outputRegex("(TOF|IvsQ|IvsLam)_([0-9]+)");
// Matches INTER13460 -> 13460
boost::regex instrumentRegex("[a-zA-Z]{3,}([0-9]{3,})");
boost::smatch matches;
if (boost::regex_match(wsName, matches, outputRegex)) {
return matches[2].str();
} else if (boost::regex_match(wsName, matches, instrumentRegex)) {
return matches[1].str();
}
// Resort to using the workspace name
return wsName;
}
/**
Takes a user specified run, or list of runs, and returns a pointer to the
desired TOF workspace
@param runStr : The run or list of runs (separated by '+')
@throws std::runtime_error if the workspace could not be prepared
@returns a shared pointer to the workspace
*/
Workspace_sptr
GenericDataProcessorPresenter::prepareRunWorkspace(const std::string &runStr) {
const std::string instrument = m_view->getProcessInstrument();
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
std::vector<std::string> runs;
boost::split(runs, runStr, boost::is_any_of("+"));
if (runs.empty())
throw std::runtime_error("No runs given");
// Remove leading/trailing whitespace from each run
for (auto runIt = runs.begin(); runIt != runs.end(); ++runIt)
boost::trim(*runIt);
// If we're only given one run, just return that
if (runs.size() == 1)
return loadRun(runs[0], instrument);
const std::string outputName = "TOF_" + boost::algorithm::join(runs, "_");
// Check if we've already prepared it
if (AnalysisDataService::Instance().doesExist(outputName))
return AnalysisDataService::Instance().retrieveWS<Workspace>(outputName);
/* Ideally, this should be executed as a child algorithm to keep the ADS tidy,
* but
* that doesn't preserve history nicely, so we'll just take care of tidying up
* in
* the event of failure.
*/
IAlgorithm_sptr algPlus = AlgorithmManager::Instance().create("Plus");
algPlus->initialize();
algPlus->setProperty("LHSWorkspace", loadRun(runs[0], instrument)->name());
algPlus->setProperty("OutputWorkspace", outputName);
// Drop the first run from the runs list
runs.erase(runs.begin());
try {
// Iterate through all the remaining runs, adding them to the first run
for (auto runIt = runs.begin(); runIt != runs.end(); ++runIt) {
algPlus->setProperty("RHSWorkspace", loadRun(*runIt, instrument)->name());
algPlus->execute();
// After the first execution we replace the LHS with the previous output
algPlus->setProperty("LHSWorkspace", outputName);
}
} catch (...) {
// If we're unable to create the full workspace, discard the partial version
AnalysisDataService::Instance().remove(outputName);
// We've tidied up, now re-throw.
throw;
}
return AnalysisDataService::Instance().retrieveWS<Workspace>(outputName);
}
/**
Loads a run from disk or fetches it from the AnalysisDataService
@param run : The name of the run
@param instrument : The instrument the run belongs to
@throws std::runtime_error if the run could not be loaded
@returns a shared pointer to the workspace
*/
Workspace_sptr
GenericDataProcessorPresenter::loadRun(const std::string &run,
const std::string &instrument = "") {
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// First, let's see if the run given is the name of a workspace in the ADS
if (AnalysisDataService::Instance().doesExist(run))
return AnalysisDataService::Instance().retrieveWS<Workspace>(run);
// Is the run string is numeric
if (boost::regex_match(run, boost::regex("\\d+"))) {
std::string wsName;
// Look for "TOF_<run_number>" in the ADS
wsName = "TOF_" + run;
if (AnalysisDataService::Instance().doesExist(wsName))
return AnalysisDataService::Instance().retrieveWS<Workspace>(wsName);
// Look for "<instrument><run_number>" in the ADS
wsName = instrument + run;
if (AnalysisDataService::Instance().doesExist(wsName))
return AnalysisDataService::Instance().retrieveWS<Workspace>(wsName);
}
// We'll just have to load it ourselves
const std::string filename = instrument + run;
IAlgorithm_sptr algLoadRun = AlgorithmManager::Instance().create("Load");
algLoadRun->initialize();
algLoadRun->setProperty("Filename", filename);
algLoadRun->setProperty("OutputWorkspace", "TOF_" + run);
algLoadRun->execute();
if (!algLoadRun->isExecuted())
throw std::runtime_error("Could not open " + filename);
return AnalysisDataService::Instance().retrieveWS<Workspace>("TOF_" + run);
}
Raquel Alvarez Banos
committed
/**
Calculates the minimum and maximum values for Q
@param ws : The workspace to fetch the instrument values from
@param theta : The value of two theta to use in calculations
*/
std::vector<double> GenericDataProcessorPresenter::calcQRange(Workspace_sptr ws,
double theta) {
Raquel Alvarez Banos
committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
auto mws = boost::dynamic_pointer_cast<MatrixWorkspace>(ws);
auto wsg = boost::dynamic_pointer_cast<WorkspaceGroup>(ws);
// If we've got a workspace group, use the first workspace in it
if (!mws && wsg)
mws = boost::dynamic_pointer_cast<MatrixWorkspace>(wsg->getItem(0));
if (!mws)
throw std::runtime_error("Could not convert " + ws->name() +
" to a MatrixWorkspace.");
double lmin, lmax;
try {
const Instrument_const_sptr instrument = mws->getInstrument();
lmin = instrument->getNumberParameter("LambdaMin")[0];
lmax = instrument->getNumberParameter("LambdaMax")[0];
} catch (std::exception &) {
throw std::runtime_error("LambdaMin/LambdaMax instrument parameters are "
"required to calculate qmin/qmax");
}
double qmin = 4 * M_PI / lmax * sin(theta * M_PI / 180.0);
double qmax = 4 * M_PI / lmin * sin(theta * M_PI / 180.0);
if (m_options["RoundQMin"].toBool())
qmin = Utils::roundToDP(qmin, m_options["RoundQMinPrecision"].toInt());
if (m_options["RoundQMax"].toBool())
qmax = Utils::roundToDP(qmax, m_options["RoundQMaxPrecision"].toInt());
std::vector<double> ret;
ret.push_back(qmin);
ret.push_back(qmax);
return ret;
}
/**
Create a transmission workspace
@param transString : the numbers of the transmission runs to use
*/
Workspace_sptr
GenericDataProcessorPresenter::makeTransWS(const std::string &transString) {
Raquel Alvarez Banos
committed
const size_t maxTransWS = 2;
std::vector<std::string> transVec;
std::vector<Workspace_sptr> transWSVec;
// Take the first two run numbers
boost::split(transVec, transString, boost::is_any_of(","));
if (transVec.size() > maxTransWS)
transVec.resize(maxTransWS);
if (transVec.size() == 0)
throw std::runtime_error("Failed to parse the transmission run list.");
for (auto it = transVec.begin(); it != transVec.end(); ++it)
transWSVec.push_back(loadRun(*it, m_view->getProcessInstrument()));
Raquel Alvarez Banos
committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
// If the transmission workspace is already in the ADS, re-use it
std::string lastName = "TRANS_" + boost::algorithm::join(transVec, "_");
if (AnalysisDataService::Instance().doesExist(lastName))
return AnalysisDataService::Instance().retrieveWS<Workspace>(lastName);
// We have the runs, so we can create a TransWS
IAlgorithm_sptr algCreateTrans =
AlgorithmManager::Instance().create("CreateTransmissionWorkspaceAuto");
algCreateTrans->initialize();
algCreateTrans->setProperty("FirstTransmissionRun", transWSVec[0]->name());
if (transWSVec.size() > 1)
algCreateTrans->setProperty("SecondTransmissionRun", transWSVec[1]->name());
std::string wsName = "TRANS_" + getRunNumber(transWSVec[0]);
if (transWSVec.size() > 1)
wsName += "_" + getRunNumber(transWSVec[1]);
algCreateTrans->setProperty("OutputWorkspace", wsName);
if (!algCreateTrans->isInitialized())
throw std::runtime_error(
"Could not initialize CreateTransmissionWorkspaceAuto");
algCreateTrans->execute();
if (!algCreateTrans->isExecuted())
throw std::runtime_error(
"CreateTransmissionWorkspaceAuto failed to execute");
return AnalysisDataService::Instance().retrieveWS<Workspace>(wsName);
}
/**
Reduce a row
@param rowNo : The row in the model to reduce
@throws std::runtime_error if reduction fails
*/
void GenericDataProcessorPresenter::reduceRow(int rowNo) {
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
const std::string runStr =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_RUNS))
.toString()
.toStdString();
const std::string transStr =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_TRANSMISSION))
.toString()
.toStdString();
const std::string options =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_OPTIONS))
.toString()
.toStdString();
double theta = 0;
bool thetaGiven =
!m_model->data(m_model->index(rowNo, ReflTableSchema::COL_ANGLE))
.toString()
.isEmpty();
if (thetaGiven)
theta = m_model->data(m_model->index(rowNo, ReflTableSchema::COL_ANGLE))
.toDouble();
auto runWS = prepareRunWorkspace(runStr);
const std::string runNo = getRunNumber(runWS);
Workspace_sptr transWS;
if (!transStr.empty())
transWS = makeTransWS(transStr);
IAlgorithm_sptr algReflOne =
Raquel Alvarez Banos
committed
AlgorithmManager::Instance().create(m_dataProcessorAlg);
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
algReflOne->initialize();
algReflOne->setProperty("InputWorkspace", runWS->name());
if (transWS)
algReflOne->setProperty("FirstTransmissionRun", transWS->name());
algReflOne->setProperty("OutputWorkspace", "IvsQ_" + runNo);
algReflOne->setProperty("OutputWorkspaceWaveLength", "IvsLam_" + runNo);
if (thetaGiven)
algReflOne->setProperty("ThetaIn", theta);
// Parse and set any user-specified options
auto optionsMap = parseKeyValueString(options);
for (auto kvp = optionsMap.begin(); kvp != optionsMap.end(); ++kvp) {
try {
algReflOne->setProperty(kvp->first, kvp->second);
} catch (Mantid::Kernel::Exception::NotFoundError &) {
throw std::runtime_error("Invalid property in options column: " +
kvp->first);
}
}
algReflOne->execute();
if (!algReflOne->isExecuted())
throw std::runtime_error("Failed to run ReflectometryReductionOneAuto.");
const double scale =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_SCALE))
.toDouble();
if (scale != 1.0) {
IAlgorithm_sptr algScale = AlgorithmManager::Instance().create("Scale");
algScale->initialize();
algScale->setProperty("InputWorkspace", "IvsQ_" + runNo);
algScale->setProperty("OutputWorkspace", "IvsQ_" + runNo);
algScale->setProperty("Factor", 1.0 / scale);
algScale->execute();
if (!algScale->isExecuted())
throw std::runtime_error("Failed to run Scale algorithm");
}
// Reduction has completed. Put Qmin and Qmax into the table if needed, for
// stitching.
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_QMIN))
.toString()
.isEmpty() ||
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_QMAX))
.toString()
.isEmpty()) {
Workspace_sptr ws =
AnalysisDataService::Instance().retrieveWS<Workspace>("IvsQ_" + runNo);
std::vector<double> qrange = calcQRange(ws, theta);
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_QMIN))
.toString()
.isEmpty())
m_model->setData(m_model->index(rowNo, ReflTableSchema::COL_QMIN),
qrange[0]);
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_QMAX))
.toString()
.isEmpty())
m_model->setData(m_model->index(rowNo, ReflTableSchema::COL_QMAX),
qrange[1]);
m_tableDirty = true;
}
// We need to make sure that qmin and qmax are respected, so we rebin to
// those limits here.
IAlgorithm_sptr algCrop = AlgorithmManager::Instance().create("Rebin");
algCrop->initialize();
algCrop->setProperty("InputWorkspace", "IvsQ_" + runNo);
algCrop->setProperty("OutputWorkspace", "IvsQ_" + runNo);
const double qmin =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_QMIN))
.toDouble();
const double qmax =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_QMAX))
.toDouble();
const double dqq =
m_model->data(m_model->index(rowNo, ReflTableSchema::COL_DQQ)).toDouble();
std::vector<double> params;
params.push_back(qmin);
params.push_back(-dqq);
params.push_back(qmax);
algCrop->setProperty("Params", params);
algCrop->execute();
if (!algCrop->isExecuted())
throw std::runtime_error("Failed to run Rebin algorithm");
// Also fill in theta if needed
if (m_model->data(m_model->index(rowNo, ReflTableSchema::COL_ANGLE))
.toString()
.isEmpty() &&
thetaGiven)
m_model->setData(m_model->index(rowNo, ReflTableSchema::COL_ANGLE), theta);
}
/**
Inserts a new row in the specified location
@param index The index to insert the new row before
*/
void GenericDataProcessorPresenter::insertRow(int index) {
const int groupId = getUnusedGroup();
if (!m_model->insertRow(index))
return;
// Set the default scale to 1.0
m_model->setData(m_model->index(index, ReflTableSchema::COL_SCALE), 1.0);
// Set the group id of the new row
m_model->setData(m_model->index(index, ReflTableSchema::COL_GROUP), groupId);
}
/**
Insert a row after the last selected row
*/
void GenericDataProcessorPresenter::appendRow() {
std::set<int> rows = m_view->getSelectedRows();
if (rows.empty())
insertRow(m_model->rowCount());
else
insertRow(*rows.rbegin() + 1);
m_tableDirty = true;
}
/**
Insert a row before the first selected row
*/
void GenericDataProcessorPresenter::prependRow() {
std::set<int> rows = m_view->getSelectedRows();
if (rows.empty())
insertRow(0);
else
insertRow(*rows.begin());
m_tableDirty = true;
}
/**
Get the index of the first blank row, or if none exists, returns -1.
*/
int GenericDataProcessorPresenter::getBlankRow() {
// Go through every column of every row (except for the scale column) and
// check if it's blank.
// If there's a blank row, return it.
const int rowCount = m_model->rowCount();
for (int i = 0; i < rowCount; ++i) {
bool isBlank = true;
for (int j = ReflTableSchema::COL_RUNS; j <= ReflTableSchema::COL_OPTIONS;
++j) {
// Don't bother checking the scale or group column, it'll always have a
// value.
if (j == ReflTableSchema::COL_SCALE || j == ReflTableSchema::COL_GROUP)
continue;
if (!m_model->data(m_model->index(i, j)).toString().isEmpty()) {