Newer
Older
auto &spec = outputWS->getSpectrum(workspaceIndex);
spec.addDetectorID(it->first);
// Start the spectrum number at 1
spec.setSpectrumNo(specnum_t(workspaceIndex + 1));
Janik Zikovsky
committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
RebinnedOutput_sptr CreateRebinnedOutputWorkspace() {
RebinnedOutput_sptr outputWS =
Mantid::DataObjects::RebinnedOutput_sptr(new RebinnedOutput());
// outputWS->setName("rebinTest");
Mantid::API::AnalysisDataService::Instance().add("rebinTest", outputWS);
// Set Q ('y') axis binning
MantidVec qbins;
qbins.push_back(0.0);
qbins.push_back(1.0);
qbins.push_back(4.0);
MantidVec qaxis;
const int numY =
static_cast<int>(VectorHelper::createAxisFromRebinParams(qbins, qaxis));
// Initialize the workspace
const int numHist = numY - 1;
const int numX = 7;
outputWS->initialize(numHist, numX, numX - 1);
// Set the normal units
outputWS->getAxis(0)->unit() = UnitFactory::Instance().create("DeltaE");
outputWS->setYUnit("Counts");
outputWS->setTitle("Empty_Title");
// Create the x-axis for histogramming.
HistogramData::BinEdges x1{-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0};
// Create a numeric axis to replace the default vertical one
Axis *const verticalAxis = new NumericAxis(numY);
outputWS->replaceAxis(1, verticalAxis);
// Now set the axis values
for (int i = 0; i < numHist; ++i) {
outputWS->setBinEdges(i, x1);
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
verticalAxis->setValue(i, qaxis[i]);
}
// One more to set on the 'y' axis
verticalAxis->setValue(numHist, qaxis[numHist]);
// Set the 'y' axis units
verticalAxis->unit() = UnitFactory::Instance().create("MomentumTransfer");
verticalAxis->title() = "|Q|";
// Set the X axis title (for conversion to MD)
outputWS->getAxis(0)->title() = "Energy transfer";
// Now, setup the data
// Q bin #1
outputWS->dataY(0)[1] = 2.0;
outputWS->dataY(0)[2] = 3.0;
outputWS->dataY(0)[3] = 3.0;
outputWS->dataY(0)[4] = 2.0;
outputWS->dataE(0)[1] = 2.0;
outputWS->dataE(0)[2] = 3.0;
outputWS->dataE(0)[3] = 3.0;
outputWS->dataE(0)[4] = 2.0;
outputWS->dataF(0)[1] = 2.0;
outputWS->dataF(0)[2] = 3.0;
outputWS->dataF(0)[3] = 3.0;
outputWS->dataF(0)[4] = 1.0;
// Q bin #2
outputWS->dataY(1)[1] = 1.0;
outputWS->dataY(1)[2] = 3.0;
outputWS->dataY(1)[3] = 3.0;
outputWS->dataY(1)[4] = 2.0;
outputWS->dataY(1)[5] = 2.0;
outputWS->dataE(1)[1] = 1.0;
outputWS->dataE(1)[2] = 3.0;
outputWS->dataE(1)[3] = 3.0;
outputWS->dataE(1)[4] = 2.0;
outputWS->dataE(1)[5] = 2.0;
outputWS->dataF(1)[1] = 1.0;
outputWS->dataF(1)[2] = 3.0;
outputWS->dataF(1)[3] = 3.0;
outputWS->dataF(1)[4] = 1.0;
outputWS->dataF(1)[5] = 2.0;
// Q bin #3
outputWS->dataY(2)[1] = 1.0;
outputWS->dataY(2)[2] = 2.0;
outputWS->dataY(2)[3] = 3.0;
outputWS->dataY(2)[4] = 1.0;
outputWS->dataE(2)[1] = 1.0;
outputWS->dataE(2)[2] = 2.0;
outputWS->dataE(2)[3] = 3.0;
outputWS->dataE(2)[4] = 1.0;
outputWS->dataF(2)[1] = 1.0;
outputWS->dataF(2)[2] = 2.0;
outputWS->dataF(2)[3] = 2.0;
outputWS->dataF(2)[4] = 1.0;
// Q bin #4
outputWS->dataY(3)[0] = 1.0;
outputWS->dataY(3)[1] = 2.0;
outputWS->dataY(3)[2] = 3.0;
outputWS->dataY(3)[3] = 2.0;
outputWS->dataY(3)[4] = 1.0;
outputWS->dataE(3)[0] = 1.0;
outputWS->dataE(3)[1] = 2.0;
outputWS->dataE(3)[2] = 3.0;
outputWS->dataE(3)[3] = 2.0;
outputWS->dataE(3)[4] = 1.0;
outputWS->dataF(3)[0] = 1.0;
outputWS->dataF(3)[1] = 2.0;
outputWS->dataF(3)[2] = 3.0;
outputWS->dataF(3)[3] = 2.0;
outputWS->dataF(3)[4] = 1.0;
outputWS->dataF(3)[5] = 1.0;
// Set representation
outputWS->finalize();
// Make errors squared rooted
for (int i = 0; i < numHist; ++i) {
for (int j = 0; j < numX - 1; ++j) {
outputWS->dataE(i)[j] = std::sqrt(outputWS->dataE(i)[j]);
Mantid::DataObjects::PeaksWorkspace_sptr
createPeaksWorkspace(const int numPeaks, const bool createOrientedLattice) {
auto peaksWS = boost::make_shared<PeaksWorkspace>();
Instrument_sptr inst =
ComponentCreationHelper::createTestInstrumentRectangular2(1, 10);
peaksWS->setInstrument(inst);
for (int i = 0; i < numPeaks; ++i) {
Peak peak(inst, i, i + 0.5);
peaksWS->addPeak(peak);
if (createOrientedLattice) {
Mantid::Geometry::OrientedLattice lattice;
peaksWS->mutableSample().setOrientedLattice(&lattice);
}
/** helper method to create preprocessed detector's table workspace */
boost::shared_ptr<DataObjects::TableWorkspace>
createTableWorkspace(const API::MatrixWorkspace_const_sptr &inputWS) {
const size_t nHist = inputWS->getNumberHistograms();
// set the target workspace
auto targWS = boost::make_shared<TableWorkspace>(nHist);
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
// detectors positions
if (!targWS->addColumn("V3D", "DetDirections"))
throw(std::runtime_error("Can not add column DetDirectrions"));
// sample-detector distance;
if (!targWS->addColumn("double", "L2"))
throw(std::runtime_error("Can not add column L2"));
// Diffraction angle
if (!targWS->addColumn("double", "TwoTheta"))
throw(std::runtime_error("Can not add column TwoTheta"));
if (!targWS->addColumn("double", "Azimuthal"))
throw(std::runtime_error("Can not add column Azimuthal"));
// the detector ID;
if (!targWS->addColumn("int", "DetectorID"))
throw(std::runtime_error("Can not add column DetectorID"));
// stores spectra index which corresponds to a valid detector index;
if (!targWS->addColumn("size_t", "detIDMap"))
throw(std::runtime_error("Can not add column detIDMap"));
// stores detector index which corresponds to the workspace index;
if (!targWS->addColumn("size_t", "spec2detMap"))
throw(std::runtime_error("Can not add column spec2detMap"));
// will see about that
// sin^2(Theta)
// std::vector<double> SinThetaSq;
//,"If the detectors were actually processed from real instrument or generated
// for some fake one ");
return targWS;
}
/** method does preliminary calculations of the detectors positions to convert
results into k-dE space ;
and places the resutls into static cash to be used in subsequent calls to this
algorithm */
void processDetectorsPositions(const API::MatrixWorkspace_const_sptr &inputWS,
DataObjects::TableWorkspace_sptr &targWS,
double Ei) {
Geometry::Instrument_const_sptr instrument = inputWS->getInstrument();
//
Geometry::IComponent_const_sptr source = instrument->getSource();
Geometry::IComponent_const_sptr sample = instrument->getSample();
if ((!source) || (!sample)) {
throw Kernel::Exception::InstrumentDefinitionError(
"Instrubment not sufficiently defined: failed to get source and/or "
"sample");
}
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
// L1
try {
double L1 = source->getDistance(*sample);
targWS->logs()->addProperty<double>("L1", L1, true);
} catch (Kernel::Exception::NotFoundError &) {
throw Kernel::Exception::InstrumentDefinitionError(
"Unable to calculate source-sample distance for workspace",
inputWS->getTitle());
}
// Instrument name
std::string InstrName = instrument->getName();
targWS->logs()->addProperty<std::string>("InstrumentName", InstrName, true);
targWS->logs()->addProperty<bool>("FakeDetectors", false, true);
targWS->logs()->addProperty<double>("Ei", Ei, true); //"Incident energy for
// Direct or Analysis
// energy for indirect
// instrument");
// get access to the workspace memory
auto &sp2detMap = targWS->getColVector<size_t>("spec2detMap");
auto &detId = targWS->getColVector<int32_t>("DetectorID");
auto &detIDMap = targWS->getColVector<size_t>("detIDMap");
auto &L2 = targWS->getColVector<double>("L2");
auto &TwoTheta = targWS->getColVector<double>("TwoTheta");
auto &Azimuthal = targWS->getColVector<double>("Azimuthal");
auto &detDir = targWS->getColVector<Kernel::V3D>("DetDirections");
//// progress messave appearence
size_t nHist = targWS->rowCount();
//// Loop over the spectra
uint32_t liveDetectorsCount(0);
for (size_t i = 0; i < nHist; i++) {
sp2detMap[i] = std::numeric_limits<size_t>::quiet_NaN();
detId[i] = std::numeric_limits<int32_t>::quiet_NaN();
detIDMap[i] = std::numeric_limits<size_t>::quiet_NaN();
L2[i] = std::numeric_limits<double>::quiet_NaN();
TwoTheta[i] = std::numeric_limits<double>::quiet_NaN();
Azimuthal[i] = std::numeric_limits<double>::quiet_NaN();
// get detector or detector group which corresponds to the spectra i
Geometry::IDetector_const_sptr spDet;
try {
spDet = inputWS->getDetector(i);
} catch (Kernel::Exception::NotFoundError &) {
continue;
}
// Check that we aren't dealing with monitor...
if (spDet->isMonitor())
continue;
// calculate the requested values;
sp2detMap[i] = liveDetectorsCount;
detId[liveDetectorsCount] = int32_t(spDet->getID());
detIDMap[liveDetectorsCount] = i;
L2[liveDetectorsCount] = spDet->getDistance(*sample);
double polar = inputWS->detectorTwoTheta(*spDet);
double azim = spDet->getPhi();
TwoTheta[liveDetectorsCount] = polar;
Azimuthal[liveDetectorsCount] = azim;
double sPhi = sin(polar);
double ez = cos(polar);
double ex = sPhi * cos(azim);
double ey = sPhi * sin(azim);
detDir[liveDetectorsCount].setX(ex);
detDir[liveDetectorsCount].setY(ey);
detDir[liveDetectorsCount].setZ(ez);
// double sinTheta=sin(0.5*polar);
// this->SinThetaSq[liveDetectorsCount] = sinTheta*sinTheta;
targWS->logs()->addProperty<uint32_t>(
"ActualDetectorsNum", liveDetectorsCount,
true); //,"The actual number of detectors receivinv signal");
}
boost::shared_ptr<Mantid::DataObjects::TableWorkspace>
buildPreprocessedDetectorsWorkspace(Mantid::API::MatrixWorkspace_sptr ws) {
Mantid::DataObjects::TableWorkspace_sptr DetPos = createTableWorkspace(ws);
double Ei = ws->run().getPropertyValueAsType<double>("Ei");
processDetectorsPositions(ws, DetPos, Ei);
return DetPos;
}
void create2DAngles(std::vector<double> &L2, std::vector<double> &polar,
std::vector<double> &azim, size_t nPolar, size_t nAzim,
double polStart, double polEnd, double azimStart,
double azimEnd) {
size_t nDet = nPolar * nAzim;
L2.resize(nDet, 10);
polar.resize(nDet);
azim.resize(nDet);
double dPolar = (polEnd - polStart) / static_cast<double>(nDet - 1);
double dAzim = (azimEnd - azimEnd) / static_cast<double>(nDet - 1);
for (size_t i = 0; i < nPolar; i++) {
for (size_t j = 0; j < nAzim; j++) {
polar[i * nPolar + j] = polStart + dPolar * static_cast<double>(i);
azim[i * nPolar + j] = azimStart + dAzim * static_cast<double>(j);