Skip to content
Snippets Groups Projects
Commit eb7486d5 authored by Jesse Brown's avatar Jesse Brown
Browse files

finish single-case examples for reich-moore

parent 7abef3de
No related branches found
No related tags found
No related merge requests found
No preview for this file type
......@@ -1249,5 +1249,16 @@ abstract = "The response of the RPI 16-segment NaI(Tl) multiplicity detector sys
year = {{Invited paper, October 12-16, 1992, ed. Charles L. Dunford, pp. 285-294, 1993}},
}
@article{blatt-biedenharn-1952,
title={The angular distribution of scattering and reaction cross sections},
author={Blatt, John M and Biedenharn, LC},
journal={Reviews of Modern Physics},
volume={24},
number={4},
pages={258},
year={1952},
publisher={APS}
}
@Comment{jabref-meta: databaseType:bibtex;}
......@@ -833,7 +833,7 @@ In Eq. (II B1 a.1)\ref{eq:sigma-in-terms-of-X} the summations are over those cha
The total cross section (for non-Coulomb initial states) is the sum of Eq. (II B1 a.1)\ref{eq:sigma-in-terms-of-X} over all possible final-state particle-pairs $\alpha'$, assuming the scattering matrix is unitary (i.e., assuming that the sum over $c'$ of $|U_{cc'}^2=1$). Written in terms of the $X$ matrix, the total cross section has the form
\begin{equation}
\begin{equation}\label{eq:tot-in-terms-of-X}
\sigma_{total}(E) = \frac{4\pi}{k_\alpha^2}\sum_J g_{J\alpha} \sum_c \left[ \left(\sin^2\phi_c + X^i_{cc}\cos(2\phi_c)- X_{cc}^r\sin(2\phi_c)\right)\right],
\end{equation}
......@@ -842,7 +842,7 @@ where again the sum over $c$ includes only those channels of the $J^\pi$ spin gr
The angle integrated elastic cross section is given by
\begin{equation}
\begin{equation}\label{eq:elastic-in-terms-of-X}
\begin{aligned}
\sigma_{elastic}(E) = \frac{4\pi}{k_\alpha^2}\sum_J g_{J\alpha} \sum_c \Biggl[ \sin^2\phi_c(1-2X^i_{cc}) &-X^r_{cc}\sin(2\phi_c) \\
& +\sum_{c'}\left({X^i_{cc'}}^2+{X^r_{cc'}}^2\right) \Biggr].
......@@ -854,8 +854,8 @@ In this case, both $c$ and $c'$ are limited to those channels of the $J^\pi$ spi
Similarly, the reaction cross section from particle pair $\alpha$ to particle pair $\alpha'$ (where $\alpha'$ is not equal to $\alpha$) is
\begin{equation}
\sigma_{reaction}(E) = \frac{4\pi}{k_\alpha^2}\sum_J g_{J\alpha} \sum_c\sum_{c'}\left[{X^i_{cc'}}^2+{X^r_{cc'}}^2\right]
\begin{equation}\label{eq:reax-in-terms-of-X}
\sigma_{reaction}(E) = \frac{4\pi}{k_\alpha^2}\sum_J g_{J\alpha} \sum_c\sum_{c'}\left[{X^i_{cc'}}^2+{X^r_{cc'}}^2\right].
\end{equation}
Here $c$ is restricted to those channels of the $J^\pi$ spin group from which the particle pair is $\alpha$, and $c'$ to those channels for which the particle-pair is $\alpha'$.
......@@ -878,6 +878,7 @@ The capture cross section for the eliminated radiation channels can be calculate
\noindent
or may be found by subtracting the sum of all reaction cross sections from the absorption cross section. In Eq. (II B1 a.6)\ref{eq:sig-cap-in-terms-of-X}, the sum over $c$ includes all incident particle channels for the $J^\pi$ spin group, and the sum over $c'$ includes \textbf{all} particle channels, both incident and exit, for that spin group.
\newpage
\noindent
\textbf{One-level two-channel case}
......@@ -909,7 +910,141 @@ For this simple case, the X matrix of Eq. (II B1.4)\ref{eq:X-matrix} takes the f
in which the subscript on the penetrabilities denotes the channel number (not the angular momentum), the symbol $D$ has been used for $E_\lambda-E-i\overline{\gamma}^2_{\lambda\gamma}$, and the subscript $\lambda$ has been omitted from the reduced-width amplitudes for simplicity's sake. This equation can be rewritten as
\begin{equation}
\begin{array}{r}
X=\frac{i P_{1} P_{2} D}{i D}\left[\begin{array}{cc}
\frac{1}{\sqrt{P_{1}}} & 0 \\
0 & \frac{1}{\sqrt{P_{2}}}
\end{array}\right]\left[\begin{array}{cc}
P_{2}\left(D-i P_{1} \gamma_{1}^{2}\right) & -i P_{1} P_{2} \gamma_{1} \gamma_{2} \\
-i P_{1} P_{2} \gamma_{1} \gamma_{2} & P_{1}\left(D-i P_{2} \gamma_{2}^{2}\right)
\end{array}\right]^{-1}\left[\begin{array}{cc}
\gamma_{1}^{2} & \gamma_{1} \gamma_{2} \\
\gamma_{1} \gamma_{2} & \gamma_{2}^{2}
\end{array}\right] \\ \\
\times\left[\begin{array}{cc}
\sqrt{P_{1}} & 0 \\
0 & \sqrt{P_{2}}
\end{array}\right] \\ \\
=\frac{P_{1} P_{2}}{P_{1} P_{2}\left(D^{2}-i P_{1} \gamma_{1}^{2} D-i P_{2} \gamma_{2}^{2} D\right)}\left[\begin{array}{cc}
\frac{1}{\sqrt{P_{1}}} & 0 \\
0 & \frac{1}{\sqrt{P_{2}}}
\end{array}\right]\left[\begin{array}{cc}
P_{1}\left(D-i P_{2} \gamma_{2}^{2}\right) & i P_{1} P_{2} \gamma_{1} \gamma_{2} \\
i P_{1} P_{2} \gamma_{1} \gamma_{2} & P_{2}\left(D-i P_{1} \gamma_{1}^{2}\right)
\end{array}\right] \\ \\
\times\left[\begin{array}{cc}
\gamma_{1}^{2} & \gamma_{1} \gamma_{2} \\
\gamma_{1} \gamma_{2} & \gamma_{2}^{2}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{P_{1}} & 0 \\
0 & \sqrt{P_{2}}
\end{array}\right],
\end{array}
\end{equation}
\noindent
or,
\begin{equation}
\begin{aligned}
X &=\frac{1}{\left(D^{2}-i P_{1} \gamma_{1}^{2} D-i P_{2} \gamma_{2}^{2} D\right)}\left[\begin{array}{cc}
\frac{1}{\sqrt{P_{1}}} & 0 \\
0 & \frac{1}{\sqrt{P_{2}}}
\end{array}\right] \\
& \qquad \times\left[\begin{array}{cc}
P_{1} \gamma_{1}^{2} D-i P_{1} P_{2} \gamma_{1}^{2} \gamma_{2}^{2}+i P_{1} P_{2} \gamma_{1}^{2} \gamma_{2}^{2} & P_{1} D \gamma_{1} \gamma_{2}-i P_{1} P_{2} \gamma_{1} \gamma_{2}^{3}+i P_{1} P_{2} \gamma_{1} \gamma_{2}^{3} \\
i P_{1} P_{2} \gamma_{1}^{3} \gamma_{2}+P_{2} D \gamma_{1} \gamma_{2}-i P_{1} P_{2} \gamma_{1}^{3} \gamma_{2} & i P_{1} P_{2} \gamma_{1}^{2} \gamma_{2}^{2}+P_{2} \gamma_{2}^{2} D-i P_{1} P_{2} \gamma_{1}^{2} \gamma_{2}^{2}
\end{array}\right] \\
& \qquad \times\left[\begin{array}{cc}
\sqrt{P_{1}} & 0 \\
0 & \sqrt{P_{2}}
\end{array}\right] \\
& = \frac{1}{\left(D^{2}-i P_{1} \gamma_{1}^{2} D-i P_{2} \gamma_{2}^{2} D\right)}\left[\begin{array}{cc}\frac{1}{\sqrt{P_{1}}} & 0 \\ 0 & \frac{1}{\sqrt{P_{2}}}\end{array}\right]\left[\begin{array}{cc}P_{1} \gamma_{1}^{2} D & P_{1} D \gamma_{1} \gamma_{2} \\ P_{2} D \gamma_{1} \gamma_{2} & P_{2} \gamma_{2}^{2} D\end{array}\right] \\
& \qquad \times\left[\begin{array}{cc}\sqrt{P_{1}} & 0 \\ 0 & \sqrt{P_{2}}\end{array}\right] \\
& =\frac{1}{\left(D-i P_{1} \gamma_{1}^{2}-i P_{2} \gamma_{2}^{2}\right)}\left[\begin{array}{cc}
P_{1} \gamma_{1}^{2} & \sqrt{P_{1} P_{2}} \gamma_{1} \gamma_{2} \\
\sqrt{P_{1} P_{2}} \gamma_{1} \gamma_{2} & P_{2} \gamma_{2}^{2}
\end{array}\right] ,
\end{aligned}
\end{equation}
\noindent
or finally,
\begin{equation}
\begin{aligned}
X &=\frac{1}{\left(E_{\lambda}-E-i \bar{\gamma}_{\gamma}^{2}-i P_{1} \gamma_{1}^{2}-i P_{2} \gamma_{2}^{2}\right)}\left[\begin{array}{cc}
P_{1} \gamma_{1}^{2} & \sqrt{P_{1} P_{2}} \gamma_{1} \gamma_{2} \\
\sqrt{P_{1} P_{2}} \gamma_{1} \gamma_{2} & P_{2} \gamma_{2}^{2}
\end{array}\right] \\
&=\frac{1}{\left(E_{\lambda}-E-i \Gamma / 2\right)}\left[\begin{array}{cc}
\Gamma_{1} / 2 & \sqrt{\Gamma_{1} \Gamma_{2}} / 2 \\
\sqrt{\Gamma_{1} \Gamma_{2}} / 2 & \Gamma_{2} / 2
\end{array}\right],
\end{aligned}
\end{equation}
\noindent
in which $\Gamma$ is the sum of the partial widths $\Gamma_1+\Gamma_2+\Gamma_\gamma$.
In this form, $X$ can be substituted into the equations for the various cross sections. Assuming the second channel is a reaction channel, Eq. (II B1 a.2)\ref{eq:tot-in-terms-of-X} for the total cross section becomes
\begin{equation}
\begin{aligned}
\sigma_{\text {total }}(E) &=\frac{4 \pi}{k_{\alpha}^{2}} g_{J}\left[\sin ^{2} \phi_{c}+\frac{\Gamma \Gamma_{1}}{4 d} \cos \left(2 \phi_{c}\right)-\frac{\left(E-E_{\lambda}\right) \Gamma_{1}}{2 d} \sin \left(2 \phi_{c}\right)\right] \\
&=\frac{2 \pi}{k_{\alpha}^{2}} g_{J}\left[1-\left(1-\frac{\Gamma \Gamma_{1}}{2 d}\right) \cos \left(2 \phi_{c}\right)-\frac{\left(E-E_{\lambda}\right) \Gamma_{1}}{d} \sin \left(2 \phi_{c}\right)\right],
\end{aligned}
\end{equation}
in which $d$ has been used to represent $|E_\lambda-E-i\Gamma/2|^2=(E-E_\lambda)^2+(\Gamma/2)^2$. Similarly, the elastic cross section, Eq. (II B1 a.3)\ref{eq:elastic-in-terms-of-X}, can be expressed as
\begin{equation}
\begin{aligned}
\sigma_{\text {elastic }}(E)=& \frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c}\left[\sin ^{2} \phi_{c}\left(1-2 \frac{\Gamma \Gamma_{1}}{4 d}\right)\right.\\
&\left.-\frac{\left(E-E_{\lambda}\right) \Gamma_{1}}{2 d} \sin \left(2 \phi_{c}\right)+\left(\frac{\Gamma \Gamma_{1}}{4 d}\right)^{2}+\left(\frac{\left(E-E_{\lambda}\right) \Gamma_{1}}{2 d}\right)^{2}\right]
\end{aligned}
\end{equation}
\noindent
which reduces to
\begin{equation}
\begin{aligned}
\sigma_{\text {elastic }}(E)=\frac{2 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c} & {\left[1-\cos 2 \phi_{c}\left(1-\frac{\Gamma \Gamma_{1}}{2 d}\right)\right.} \\
&\left.-\sin 2 \phi_{c} \frac{\left(E-E_{\lambda}\right) \Gamma_{1}}{d}-\frac{\Gamma_{1}\left(\Gamma_{\gamma}+\Gamma_{2}\right)}{2 d}\right].
\end{aligned}
\end{equation}
\noindent
The reaction cross section, Eq. (II B1 a.4)\ref{eq:reax-in-terms-of-X}, becomes
\begin{equation}
\begin{aligned}
\sigma_{\text {reaction }}(E) &=\frac{4 \pi}{k_{\alpha}^{2}} g\left[\left(\frac{\Gamma \sqrt{\Gamma_{1} \Gamma_{2}}}{4 d}\right)^{2}+\left(\frac{\left(E-E_{\lambda}\right) \sqrt{\Gamma_{1} \Gamma_{2}}}{2 d}\right)^{2}\right] \\
&=\frac{\pi g}{k_{\alpha}^{2}}\left[\frac{\Gamma_{1} \Gamma_{2}}{d}\right],
\end{aligned}
\end{equation}
\noindent
and, finally, the capture cross section, Eq. (II B1 a.6)\ref{eq:sig-cap-in-terms-of-X}, is
\begin{equation}
\begin{aligned}
\sigma_{\text {capture }}(E) &=\frac{4 \pi g}{k_{\alpha}^{2}}\left[\frac{\Gamma \Gamma_{1}}{4 d}-\left\{\left(\frac{\Gamma \Gamma_{1}}{4 d}\right)^{2}+\left(\frac{\left(E-E_{\lambda}\right) \Gamma_{1}}{2 d}\right)^{2}\right.\right.\\
&\qquad\left.\left.+\left(\frac{\Gamma \sqrt{\Gamma_{1} \Gamma_{2}}}{4 d}\right)^{2}+\left(\frac{\left(E-E_{\lambda}\right) \sqrt{\Gamma_{1} \Gamma_{2}}}{2 d}\right)^{2}\right\}\right] \\
&= \frac{4 \pi g}{k_{\alpha}^{2}}\left[\frac{\Gamma \Gamma_{1}}{4 d}-\left\{\frac{\Gamma_{1}^{2}}{4 d}+\frac{\Gamma_{1} \Gamma_{2}}{4 d}\right\}\right]=\frac{\pi g}{k_{\alpha}^{2}}\left[\frac{\Gamma_{1} \bar{\Gamma}_{\gamma}}{d}\right] .
\end{aligned}
\end{equation}
\newpage
\noindent
\textbf{Angular distributions}
Angular distributions (elastic, inelastic, or other reaction) cross sections for incident neutrons can be calculated from Reich-Moore resonance parameters. Following Blatt and Biedenharn [JB52]\cite{blatt-biedenharn-1952} with some notational changes, the angular distribution cross section in the center-of-mass system may be written
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Simulation of Full R-Matrix} \label{subsec:r-matrix-full}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment