Newer
Older
#include <Cabana_ExecutionPolicy.hpp>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include <Cabana_AoSoA.hpp>
#include <boost/test/unit_test.hpp>
//---------------------------------------------------------------------------//
// Check the data given a set of values.
template<class aosoa_type>
void checkDataMembers(
aosoa_type aosoa,
const float fval, const double dval, const int ival,
const std::size_t dim_1, const std::size_t dim_2,
const std::size_t dim_3, const std::size_t dim_4 )
{
for ( auto idx = aosoa.begin(); idx != aosoa.end(); ++idx )
{
// Member 0.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
BOOST_TEST( aosoa.template get<0>( idx, i, j, k ) ==
fval * (i+j+k) );
// Member 1.
BOOST_TEST( aosoa.template get<1>( idx ) == ival );
// Member 2.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
for ( std::size_t l = 0; l < dim_4; ++l )
BOOST_TEST( aosoa.template get<2>( idx, i, j, k, l ) ==
fval * (i+j+k+l) );
// Member 3.
for ( std::size_t i = 0; i < dim_1; ++i )
BOOST_TEST( aosoa.template get<3>( idx, i ) == dval * i );
// Member 4.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
BOOST_TEST( aosoa.template get<4>( idx, i, j ) == dval * (i+j) );
}
}
//---------------------------------------------------------------------------//
// TESTS
//---------------------------------------------------------------------------//
BOOST_AUTO_TEST_CASE( parallel_for_test )
{
// Manually set the inner array size.
using inner_array_size = Cabana::InnerArraySize<10>;
// Data dimensions.
const std::size_t dim_1 = 3;
const std::size_t dim_2 = 2;
const std::size_t dim_3 = 4;
const std::size_t dim_4 = 3;
// Declare data types.
using DataTypes =
Cabana::MemberDataTypes<float[dim_1][dim_2][dim_3],
int,
float[dim_1][dim_2][dim_3][dim_4],
double[dim_1],
double[dim_1][dim_2]
>;
// Declare the AoSoA type.
using AoSoA_t = Cabana::AoSoA<DataTypes,inner_array_size,TEST_EXECSPACE>;
// Create an AoSoA.
std::size_t num_data = 155;
AoSoA_t aosoa( num_data );
// Create an execution policy.
range_policy( aosoa.begin(), aosoa.end() );
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// Write a functor to operate on.
float fval = 3.4;
double dval = 1.23;
int ival = 1;
auto func_1 = KOKKOS_LAMBDA( const Cabana::Index idx )
{
// Member 0.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
aosoa.get<0>( idx, i, j, k ) = fval * (i+j+k);
// Member 1.
aosoa.get<1>( idx ) = ival;
// Member 2.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
for ( std::size_t l = 0; l < dim_4; ++l )
aosoa.get<2>( idx, i, j, k, l ) = fval * (i+j+k+l);
// Member 3.
for ( std::size_t i = 0; i < dim_1; ++i )
aosoa.get<3>( idx, i ) = dval * i;
// Member 4.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
aosoa.get<4>( idx, i, j ) = dval * (i+j);
};
// Loop in parallel using 1D struct parallelism.
Cabana::parallel_for( range_policy, func_1, Cabana::StructParallelTag() );
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Check data members for proper initialization.
checkDataMembers( aosoa, fval, dval, ival, dim_1, dim_2, dim_3, dim_4 );
// Change values and write a second functor.
fval = 93.4;
dval = 12.1;
ival = 4;
auto func_2 = KOKKOS_LAMBDA( const Cabana::Index idx )
{
// Member 0.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
aosoa.get<0>( idx, i, j, k ) = fval * (i+j+k);
// Member 1.
aosoa.get<1>( idx ) = ival;
// Member 2.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
for ( std::size_t l = 0; l < dim_4; ++l )
aosoa.get<2>( idx, i, j, k, l ) = fval * (i+j+k+l);
// Member 3.
for ( std::size_t i = 0; i < dim_1; ++i )
aosoa.get<3>( idx, i ) = dval * i;
// Member 4.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
aosoa.get<4>( idx, i, j ) = dval * (i+j);
};
// Loop in parallel using 1D array parallelism.
Cabana::parallel_for( range_policy, func_2, Cabana::ArrayParallelTag() );
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Check data members for proper initialization.
checkDataMembers( aosoa, fval, dval, ival, dim_1, dim_2, dim_3, dim_4 );
// Change values and write a third functor.
fval = 7.7;
dval = 3.2;
ival = 9;
auto func_3 = KOKKOS_LAMBDA( const Cabana::Index idx )
{
// Member 0.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
aosoa.get<0>( idx, i, j, k ) = fval * (i+j+k);
// Member 1.
aosoa.get<1>( idx ) = ival;
// Member 2.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
for ( std::size_t k = 0; k < dim_3; ++k )
for ( std::size_t l = 0; l < dim_4; ++l )
aosoa.get<2>( idx, i, j, k, l ) = fval * (i+j+k+l);
// Member 3.
for ( std::size_t i = 0; i < dim_1; ++i )
aosoa.get<3>( idx, i ) = dval * i;
// Member 4.
for ( std::size_t i = 0; i < dim_1; ++i )
for ( std::size_t j = 0; j < dim_2; ++j )
aosoa.get<4>( idx, i, j ) = dval * (i+j);
};
// Loop in parallel using 2D struct and array parallelism.
Cabana::parallel_for(
range_policy, func_3, Cabana::StructAndArrayParallelTag() );
// Check data members for proper initialization.
checkDataMembers( aosoa, fval, dval, ival, dim_1, dim_2, dim_3, dim_4 );
}