CanopyHydrology_kern1_multiple_read_phenology.cc 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//
// This example plays with geometric regions in Legion by figuring out one way
// to do geometric regions that are grid_cell x PFT.
//
// The first strategy is a 2D Rect IndexSpace
//

#include <array>
#include <sstream>
#include <iterator>
#include <exception>
#include <string>
#include <stdlib.h>
#include <cstring>
#include <vector>
#include <iostream>
#include <iomanip>
#include <numeric>

#include "utils.hh"
#include "readers.hh"
#include "CanopyHydrology.hh"
#include "legion.h"

using namespace Legion;

namespace TaskIDs {
enum TaskIDs {
  TOP_LEVEL_TASK,
  INIT_PHENOLOGY,
  INIT_FORCING
};
} // namespace

namespace FieldIDs {
enum FieldIDs {
  ELAI,
  ESAI,
  FORC_AIR_TEMP,
  FORC_RAIN,
  FORC_SNOW,
  FORC_IRRIG,
  QFLX_PREC_INTR,
  QFLX_IRRIG,
  QFLX_PREC_GRND,
  QFLX_SNWCP_LIQ,
  QFLX_SNWCP_ICE,
  QFLX_SNOW_GRND_PATCH,
  QFLX_RAIN_GRND
};
} // namespace

static const int n_months = 12;
static const int n_pfts = 17;
static const int n_max_times = 31 * 24 * 2; // max days per month times hours per
                                            // day * half hour timestep
static const int n_grid_cells = 24;


void InitPhenology(const Task *task,
                   const std::vector<PhysicalRegion> &regions,
                   Context ctx, Runtime *runtime)
{
  assert(regions.size() == 1);
  assert(task->regions.size() == 1);
  assert(task->regions[0].privilege_fields.size() == 2); // LAI, SAI

  std::cout << "Executing InitPhenology task" << std::endl;
  const FieldAccessor<WRITE_DISCARD,double,2> elai(regions[0], FieldIDs::ELAI);
  const FieldAccessor<WRITE_DISCARD,double,2> esai(regions[0], FieldIDs::ESAI);
  ELM::Utils::read_phenology("../links/surfacedataWBW.nc", n_months, n_pfts, 0, elai, esai);
  ELM::Utils::read_phenology("../links/surfacedataBRW.nc", n_months, n_pfts, n_months, elai, esai);
}  

int InitForcing(const Task *task,
                 const std::vector<PhysicalRegion> &regions,
                 Context ctx, Runtime *runtime)
{
  assert(regions.size() == 1);
  assert(task->regions.size() == 1);
  assert(task->regions[0].privilege_fields.size() == 4); // rain, snow, temp, irrig

  std::cout << "Executing InitForcing task" << std::endl;

  // init rain, snow, and air temp through reader
  const FieldAccessor<WRITE_DISCARD,double,2> rain(regions[0], FieldIDs::FORC_RAIN);
  const FieldAccessor<WRITE_DISCARD,double,2> snow(regions[0], FieldIDs::FORC_SNOW);
  const FieldAccessor<WRITE_DISCARD,double,2> air_temp(regions[0], FieldIDs::FORC_AIR_TEMP);
  int n_times = ELM::Utils::read_forcing("../links/forcing", n_max_times, 0, n_grid_cells,
          rain, snow, air_temp);

  // init irrig to zero
  const FieldAccessor<WRITE_DISCARD,double,2> irrig(regions[0], FieldIDs::FORC_IRRIG);
  for (size_t t=0; t!=n_max_times; ++t) {
    for (size_t g=0; g!=n_grid_cells; ++g) {
      irrig[t][g] = 0.;
    }
  }

  return n_times;
}  


void top_level_task(const Task *task,
                    const std::vector<PhysicalRegion> &regions,
                    Context ctx, Runtime *runtime)
{
  std::cout << "Executing Top Level Task" << std::endl;

  // -----------------------------------------------------------------------------
  // SETUP Phase
  // -----------------------------------------------------------------------------
  //
  // Create index spaces
  //
  // create a domain and index space for PFT-state
  const Rect<2> pft_state_domain(Point<2>(0,0), Point<2>(n_grid_cells-1, n_pfts-1));
  IndexSpace pft_state_is = runtime->create_index_space(ctx, pft_state_domain); 
  printf("Created index space for PFTs: %x\n", pft_state_is.get_id());

  // create a domain and index space for forcing data
  const Rect<2> forcing_domain(Point<2>(0,0), Point<2>(n_max_times-1,n_grid_cells-1));
  IndexSpace forcing_is = runtime->create_index_space(ctx, forcing_domain); 
  printf("Created index space for forcing data: %x\n", forcing_is.get_id());

  // create a domain and index space for grid cell-state
  const Rect<1> gc_state_domain(Point<1>(0), Point<1>(n_grid_cells-1));
  IndexSpace gc_state_is = runtime->create_index_space(ctx, gc_state_domain); 
  printf("Created index space for grid-cells: %x\n", gc_state_is.get_id());
  

  //
  // Create field spaces
  //
  // phenology field space
  FieldSpace phenology_fs = runtime->create_field_space(ctx);
  auto phenology_fs_ids = std::vector<FieldIDs::FieldIDs>{ FieldIDs::ELAI, FieldIDs::ESAI };
  printf("Created field space for phenology: %x\n", phenology_fs.get_id());
  {
    FieldAllocator allocator = runtime->create_field_allocator(ctx, phenology_fs);
    for (auto id : phenology_fs_ids) allocator.allocate_field(sizeof(double), id);
  }

  // forcing field space
  FieldSpace forcing_fs = runtime->create_field_space(ctx);
  auto forcing_fs_ids = std::vector<FieldIDs::FieldIDs>{
    FieldIDs::FORC_RAIN, FieldIDs::FORC_SNOW, FieldIDs::FORC_AIR_TEMP, FieldIDs::FORC_IRRIG};
  printf("Created field space for forcing: %x\n", forcing_fs.get_id());
  {
    FieldAllocator allocator = runtime->create_field_allocator(ctx, forcing_fs);
    for (auto id : forcing_fs_ids) allocator.allocate_field(sizeof(double), id);
  }

  // grid-cell flux data field space
  FieldSpace flux_fs = runtime->create_field_space(ctx);
  auto flux_fs_ids = std::vector<FieldIDs::FieldIDs>{
    FieldIDs::QFLX_PREC_GRND, FieldIDs::QFLX_IRRIG, FieldIDs::QFLX_SNWCP_LIQ, FieldIDs::QFLX_SNWCP_ICE,
    FieldIDs::QFLX_SNOW_GRND_PATCH, FieldIDs::QFLX_RAIN_GRND};
  printf("Created field space for PFT-level fluxes: %x\n", flux_fs.get_id());
  {
    FieldAllocator allocator = runtime->create_field_allocator(ctx, flux_fs);
    for (auto id : flux_fs_ids) allocator.allocate_field(sizeof(double), id);
  }
  
  
  //
  // Physical Regions
  //  
  // Logical region is the cross product of IndexSpace and FieldSpace --
  // create logical regions, physical regions, and the block til memory is
  // available.
  LogicalRegion phenology_lr = runtime->create_logical_region(ctx, pft_state_is, phenology_fs);
  RegionRequirement phenology_req(phenology_lr, READ_WRITE, EXCLUSIVE, phenology_lr);
  for (auto id : phenology_fs_ids) phenology_req.add_field(id);
  InlineLauncher phenology_region_launcher(phenology_req);
  PhysicalRegion phenology_region = runtime->map_region(ctx, phenology_region_launcher);

  LogicalRegion forcing_lr = runtime->create_logical_region(ctx, forcing_is, forcing_fs);
  RegionRequirement forcing_req(forcing_lr, READ_WRITE, EXCLUSIVE, forcing_lr);
  for (auto id : forcing_fs_ids) forcing_req.add_field(id);
  InlineLauncher forcing_region_launcher(forcing_req);
  PhysicalRegion forcing_region = runtime->map_region(ctx, forcing_region_launcher);

  LogicalRegion flux_lr = runtime->create_logical_region(ctx, pft_state_is, flux_fs);
  RegionRequirement flux_req(flux_lr, READ_WRITE, EXCLUSIVE, flux_lr);
  for (auto id : flux_fs_ids) flux_req.add_field(id);
  InlineLauncher flux_region_launcher(flux_req);
  PhysicalRegion flux_region = runtime->map_region(ctx, flux_region_launcher);

  
  // -----------------------------------------------------------------------------
  // END SETUP
  // -----------------------------------------------------------------------------
  
  // -----------------------------------------------------------------------------
  // Initialization Phase
  // -----------------------------------------------------------------------------
  // launch task to read phenology
  std::cout << "Launching Init Phenology" << std::endl;
200
  //  phenology_region.wait_until_valid(); // actually likely not needed, implicit wait on accessor
201
202
203
204
205
206
207
208
  TaskLauncher phenology_launcher(TaskIDs::INIT_PHENOLOGY, TaskArgument(NULL, 0));
  phenology_launcher.add_region_requirement(
      RegionRequirement(phenology_lr, WRITE_DISCARD, EXCLUSIVE, phenology_lr));
  for (auto id : phenology_fs_ids) phenology_launcher.add_field(0,id);
  runtime->execute_task(ctx, phenology_launcher);

  // launch task to read forcing
  std::cout << "Launching Init Forcing" << std::endl;
209
  //  forcing_region.wait_until_valid(); // actually likely not needed, implicit wait on accessor
210
211
212
213
214
215
216
  TaskLauncher forcing_launcher(TaskIDs::INIT_FORCING, TaskArgument(NULL, 0));
  forcing_launcher.add_region_requirement(
      RegionRequirement(forcing_lr, WRITE_DISCARD, EXCLUSIVE, forcing_lr));
  for (auto id : forcing_fs_ids) forcing_launcher.add_field(0,id);
  runtime->execute_task(ctx, forcing_launcher);

  // MUST DO BEFORE FLUX IS READY
217
  //  flux_region.wait_until_valid(); // actually likely not needed, implicit wait on accessor
218
219
220
221
222
223
224
225
226
227

  
  // get an accessor and check phenology
  const FieldAccessor<READ_ONLY,double,2> elai(phenology_region, FieldIDs::ELAI);
  std::cout << "elai = " << elai[5][7] << "," << elai[6][9] << std::endl;

  // get an accessor and check forcing
  const FieldAccessor<READ_ONLY,double,2> air_temp(forcing_region, FieldIDs::FORC_AIR_TEMP);
  std::cout << "air temp = " << air_temp[5][7] << "," << air_temp[33][14] << std::endl;

228
229
230
231
232
233
234
235
236
237
238

  // clean up resources
  runtime->destroy_logical_region(ctx, phenology_lr);
  runtime->destroy_logical_region(ctx, forcing_lr);
  runtime->destroy_logical_region(ctx, flux_lr);
  runtime->destroy_field_space(ctx, phenology_fs);
  runtime->destroy_field_space(ctx, forcing_fs);
  runtime->destroy_field_space(ctx, flux_fs);
  runtime->destroy_index_space(ctx, pft_state_is);
  runtime->destroy_index_space(ctx, forcing_is);
  runtime->destroy_index_space(ctx, gc_state_is);
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
}



// Main just calls top level task
int main(int argc, char **argv)
{
  Runtime::set_top_level_task_id(TaskIDs::TOP_LEVEL_TASK);

  {
    TaskVariantRegistrar registrar(TaskIDs::TOP_LEVEL_TASK, "top_level");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    Runtime::preregister_task_variant<top_level_task>(registrar, "top_level");
  }

  {
    TaskVariantRegistrar registrar(TaskIDs::INIT_PHENOLOGY, "initialize_phenology");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    registrar.set_leaf();
    Runtime::preregister_task_variant<InitPhenology>(registrar, "initialize_phenology");
  }

  {
    TaskVariantRegistrar registrar(TaskIDs::INIT_FORCING, "initialize_forcing");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    registrar.set_leaf();
    Runtime::preregister_task_variant<int,InitForcing>(registrar, "initialize_forcing");
  }

  return Runtime::start(argc, argv);
}