CanopyHydrology_kern1_multiple.cc 16.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
//
// This example plays with geometric regions in Legion by figuring out one way
// to do geometric regions that are grid_cell x PFT.
//
// The first strategy is a 2D Rect IndexSpace
//

#include <array>
#include <sstream>
#include <iterator>
#include <exception>
#include <string>
#include <stdlib.h>
#include <cstring>
#include <vector>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <fstream>

#include "utils.hh"
#include "readers.hh"
#include "CanopyHydrology.hh"
#include "legion.h"

using namespace Legion;

namespace TaskIDs {
enum TaskIDs {
  TOP_LEVEL_TASK,
  INIT_PHENOLOGY,
  INIT_FORCING,
  CANOPY_HYDROLOGY_INTERCEPTION,
  UTIL_SUM_MIN_MAX_REDUCTION
};
} // namespace

namespace FieldIDs {
enum FieldIDs {
  ELAI,
  ESAI,
  FORC_AIR_TEMP,
  FORC_RAIN,
  FORC_SNOW,
  FORC_IRRIG,
  QFLX_PREC_INTR,
  QFLX_IRRIG,
  QFLX_PREC_GRND,
  QFLX_SNWCP_LIQ,
  QFLX_SNWCP_ICE,
  QFLX_SNOW_GRND_PATCH,
  QFLX_RAIN_GRND,
  H2O_CAN  
};
} // namespace

static const int n_months = 12;
static const int n_pfts = 17;
static const int n_max_times = 31 * 24 * 2; // max days per month times hours per
                                            // day * half hour timestep
static const int n_grid_cells = 24;


std::array<double,3> SumMinMaxReduction(const Task *task,
                 const std::vector<PhysicalRegion> &regions,
                 Context ctx, Runtime *runtime)
{
  assert(regions.size() == 1);
  assert(task->regions.size() == 1);
  assert(task->regions[0].privilege_fields.size() == 1);
  FieldID fid = *(task->regions[0].privilege_fields.begin());

  FieldAccessor<READ_ONLY,double,2,coord_t,
                Realm::AffineAccessor<double,2,coord_t> > field(regions[0], fid);
  Rect<2> rect = runtime->get_index_space_domain(ctx,
          task->regions[0].region.get_index_space());

  std::array<double,3> sum_min_max = {0., 0., 0.};
  for (PointInRectIterator<2> pir(rect); pir(); pir++) {  
    auto val = field[*pir];
    sum_min_max[0] += val;
    sum_min_max[1] = std::min(sum_min_max[1], val);
    sum_min_max[2] = std::max(sum_min_max[2], val);
  }
  return sum_min_max;
}
  


void InitPhenology(const Task *task,
                   const std::vector<PhysicalRegion> &regions,
                   Context ctx, Runtime *runtime)
{
  assert(regions.size() == 1);
  assert(task->regions.size() == 1);
  assert(task->regions[0].privilege_fields.size() == 2); // LAI, SAI

  std::cout << "LOG: Executing InitPhenology task" << std::endl;
  const FieldAccessor<WRITE_DISCARD,double,2> elai(regions[0], FieldIDs::ELAI);
  const FieldAccessor<WRITE_DISCARD,double,2> esai(regions[0], FieldIDs::ESAI);
  ELM::Utils::read_phenology("../links/surfacedataWBW.nc", n_months, n_pfts, 0, elai, esai);
  ELM::Utils::read_phenology("../links/surfacedataBRW.nc", n_months, n_pfts, n_months, elai, esai);
}  

int InitForcing(const Task *task,
                 const std::vector<PhysicalRegion> &regions,
                 Context ctx, Runtime *runtime)
{
  assert(regions.size() == 1);
  assert(task->regions.size() == 1);
  assert(task->regions[0].privilege_fields.size() == 4); // rain, snow, temp, irrig

  std::cout << "LOG: Executing InitForcing task" << std::endl;

  // init rain, snow, and air temp through reader
  const FieldAccessor<WRITE_DISCARD,double,2> rain(regions[0], FieldIDs::FORC_RAIN);
  const FieldAccessor<WRITE_DISCARD,double,2> snow(regions[0], FieldIDs::FORC_SNOW);
  const FieldAccessor<WRITE_DISCARD,double,2> air_temp(regions[0], FieldIDs::FORC_AIR_TEMP);
  int n_times = ELM::Utils::read_forcing("../links/forcing", n_max_times, 0, n_grid_cells,
          rain, snow, air_temp);

  // init irrig to zero
  const FieldAccessor<WRITE_DISCARD,double,2> irrig(regions[0], FieldIDs::FORC_IRRIG);
  for (size_t t=0; t!=n_max_times; ++t) {
    for (size_t g=0; g!=n_grid_cells; ++g) {
      irrig[t][g] = 0.;
    }
  }

  return n_times;
}  


void CanopyHydrology_Interception_task(const Task *task,
                    const std::vector<PhysicalRegion> &regions,
                    Context ctx, Runtime *runtime)
{
  assert(regions.size() == 3);
  assert(task->regions.size() == 3);

  // process args / parameters
  int lcv_time;
  double dtime, dewmx;
  int ltype, ctype, frac_veg_nosno;
  bool urbpoi, do_capsnow;
  using args_t = std::tuple<int, double, int, int, bool, bool, double, int>;
  std::tie(lcv_time, dtime, ltype, ctype, urbpoi, do_capsnow, dewmx, frac_veg_nosno) =
      *((args_t*) task->args);

  // get accessors
  using AffineAccessorRO = FieldAccessor<READ_ONLY,double,2,coord_t,
                                         Realm::AffineAccessor<double,2,coord_t> >;
  using AffineAccessorRW = FieldAccessor<READ_WRITE,double,2,coord_t,
                                         Realm::AffineAccessor<double,2,coord_t> >;
  
  // -- forcing
  const AffineAccessorRO forc_rain(regions[0], FieldIDs::FORC_RAIN);
  const AffineAccessorRO forc_snow(regions[0], FieldIDs::FORC_SNOW);
  const AffineAccessorRO forc_irrig(regions[0], FieldIDs::FORC_IRRIG);

  // -- phenology
  const AffineAccessorRO elai(regions[1], FieldIDs::ELAI);
  const AffineAccessorRO esai(regions[1], FieldIDs::ESAI);

  // -- output
  const AffineAccessorRW qflx_prec_intr(regions[2], FieldIDs::QFLX_PREC_INTR);
  const AffineAccessorRW qflx_irrig(regions[2], FieldIDs::QFLX_IRRIG);
  const AffineAccessorRW qflx_prec_grnd(regions[2], FieldIDs::QFLX_PREC_GRND);
  const AffineAccessorRW qflx_snwcp_liq(regions[2], FieldIDs::QFLX_SNWCP_LIQ);
  const AffineAccessorRW qflx_snwcp_ice(regions[2], FieldIDs::QFLX_SNWCP_ICE);
  const AffineAccessorRW qflx_snow_grnd_patch(regions[2], FieldIDs::QFLX_SNOW_GRND_PATCH);
  const AffineAccessorRW qflx_rain_grnd(regions[2], FieldIDs::QFLX_RAIN_GRND);
  const AffineAccessorRW h2ocan(regions[2], FieldIDs::H2O_CAN);


  int n_irrig_steps_left = 0.;  // NOTE: still not physical quite sure what to do with this one.
  
  for (size_t g = 0; g != n_grid_cells; ++g) {
    for (size_t p = 0; p != n_pfts; ++p) {
      ELM::CanopyHydrology_Interception(dtime,
              forc_rain[lcv_time][g], forc_snow[lcv_time][g], forc_irrig[lcv_time][g],
              ltype, ctype, urbpoi, do_capsnow,
              elai[g][p], esai[g][p], dewmx, frac_veg_nosno,
              h2ocan[g][p], n_irrig_steps_left,
              qflx_prec_intr[g][p], qflx_irrig[g][p], qflx_prec_grnd[g][p],
              qflx_snwcp_liq[g][p], qflx_snwcp_ice[g][p],
              qflx_snow_grnd_patch[g][p], qflx_rain_grnd[g][p]);
    }
  }
}
  
  

void top_level_task(const Task *task,
                    const std::vector<PhysicalRegion> &regions,
                    Context ctx, Runtime *runtime)
{
  std::cout << "LOG: Executing Top Level Task" << std::endl;

  // -----------------------------------------------------------------------------
  // SETUP Phase
  // -----------------------------------------------------------------------------
  //
  // Create index spaces
  //
  // create a domain and index space for PFT-state
  const Rect<2> pft_state_domain(Point<2>(0,0), Point<2>(n_grid_cells-1, n_pfts-1));
  IndexSpace pft_state_is = runtime->create_index_space(ctx, pft_state_domain); 
  std::cout << "LOG: Created index space for PFTs: " <<  pft_state_is.get_id() << std::endl;

  // create a domain and index space for forcing data
  const Rect<2> forcing_domain(Point<2>(0,0), Point<2>(n_max_times-1,n_grid_cells-1));
  IndexSpace forcing_is = runtime->create_index_space(ctx, forcing_domain); 
  std::cout << "LOG: Created index space for forcing data: " <<  forcing_is.get_id() << std::endl;

  //
  // Create field spaces
  //
  // phenology field space
  FieldSpace phenology_fs = runtime->create_field_space(ctx);
  auto phenology_fs_ids = std::vector<FieldIDs::FieldIDs>{ FieldIDs::ELAI, FieldIDs::ESAI };
  printf("Created field space for phenology: %x\n", phenology_fs.get_id());
  {
    FieldAllocator allocator = runtime->create_field_allocator(ctx, phenology_fs);
    for (auto id : phenology_fs_ids) allocator.allocate_field(sizeof(double), id);
  }

  // forcing field space
  FieldSpace forcing_fs = runtime->create_field_space(ctx);
  auto forcing_fs_ids = std::vector<FieldIDs::FieldIDs>{
    FieldIDs::FORC_RAIN, FieldIDs::FORC_SNOW, FieldIDs::FORC_AIR_TEMP, FieldIDs::FORC_IRRIG};
  printf("Created field space for forcing: %x\n", forcing_fs.get_id());
  {
    FieldAllocator allocator = runtime->create_field_allocator(ctx, forcing_fs);
    for (auto id : forcing_fs_ids) allocator.allocate_field(sizeof(double), id);
  }

  // grid-cell flux data field space
  FieldSpace flux_fs = runtime->create_field_space(ctx);
  auto flux_fs_ids = std::vector<FieldIDs::FieldIDs>{
    FieldIDs::QFLX_PREC_INTR, FieldIDs::QFLX_IRRIG, FieldIDs::QFLX_PREC_GRND,
    FieldIDs::QFLX_SNWCP_LIQ, FieldIDs::QFLX_SNWCP_ICE,
    FieldIDs::QFLX_SNOW_GRND_PATCH, FieldIDs::QFLX_RAIN_GRND,
    FieldIDs::H2O_CAN};
  printf("Created field space for PFT-level fluxes: %x\n", flux_fs.get_id());
  {
    FieldAllocator allocator = runtime->create_field_allocator(ctx, flux_fs);
    for (auto id : flux_fs_ids) allocator.allocate_field(sizeof(double), id);
  }
  
  
  //
  // Physical Regions
  //  
  // Logical region is the cross product of IndexSpace and FieldSpace --
  // create logical regions, physical regions, and the block til memory is
  // available.
  LogicalRegion phenology_lr = runtime->create_logical_region(ctx, pft_state_is, phenology_fs);
  RegionRequirement phenology_req(phenology_lr, READ_WRITE, EXCLUSIVE, phenology_lr);
  for (auto id : phenology_fs_ids) phenology_req.add_field(id);
  InlineLauncher phenology_region_launcher(phenology_req);
  PhysicalRegion phenology_region = runtime->map_region(ctx, phenology_region_launcher);

  LogicalRegion forcing_lr = runtime->create_logical_region(ctx, forcing_is, forcing_fs);
  RegionRequirement forcing_req(forcing_lr, READ_WRITE, EXCLUSIVE, forcing_lr);
  for (auto id : forcing_fs_ids) forcing_req.add_field(id);
  InlineLauncher forcing_region_launcher(forcing_req);
  PhysicalRegion forcing_region = runtime->map_region(ctx, forcing_region_launcher);

  LogicalRegion flux_lr = runtime->create_logical_region(ctx, pft_state_is, flux_fs);
  RegionRequirement flux_req(flux_lr, READ_WRITE, EXCLUSIVE, flux_lr);
  for (auto id : flux_fs_ids) flux_req.add_field(id);
  InlineLauncher flux_region_launcher(flux_req);
  PhysicalRegion flux_region = runtime->map_region(ctx, flux_region_launcher);

  
  // -----------------------------------------------------------------------------
  // END SETUP
  // -----------------------------------------------------------------------------
  
  // -----------------------------------------------------------------------------
  // Initialization Phase
  // -----------------------------------------------------------------------------
  // launch task to read phenology
  std::cout << "LOG: Launching Init Phenology" << std::endl;
  //  phenology_region.wait_until_valid(); // actually likely not needed, implicit wait on accessor
  TaskLauncher phenology_launcher(TaskIDs::INIT_PHENOLOGY, TaskArgument(NULL, 0));
  phenology_launcher.add_region_requirement(
      RegionRequirement(phenology_lr, WRITE_DISCARD, EXCLUSIVE, phenology_lr));
  for (auto id : phenology_fs_ids) phenology_launcher.add_field(0,id);
  runtime->execute_task(ctx, phenology_launcher);

  // launch task to read forcing
  std::cout << "LOG: Launching Init Forcing" << std::endl;
  //  forcing_region.wait_until_valid(); // actually likely not needed, implicit wait on accessor
  TaskLauncher forcing_launcher(TaskIDs::INIT_FORCING, TaskArgument(NULL, 0));
  forcing_launcher.add_region_requirement(
      RegionRequirement(forcing_lr, WRITE_DISCARD, EXCLUSIVE, forcing_lr));
  for (auto id : forcing_fs_ids) forcing_launcher.add_field(0,id);
  auto forcing_future = runtime->execute_task(ctx, forcing_launcher);
  int n_times = forcing_future.get_result<int>();

  // launch task to call interception
  std::cout << "LOG: Launching Init Forcing" << std::endl;

  // -- fixed magic parameters as arguments
  const int ctype = 1;
  const int ltype = 1;
  const bool urbpoi = false;
  const bool do_capsnow = false;
  const int frac_veg_nosno = 1;
  const double dewmx = 0.1;
  const double dtime = 1800.0;

  std::ofstream soln_file;
  soln_file.open("test_CanopyHydrology_kern1_multiple.soln");
  soln_file << "Time\t Total Canopy Water\t Min Water\t Max Water" << std::endl;
  soln_file << std::setprecision(16) << 0 << "\t" << 0.0 << "\t" << 0.0 << "\t" << 0.0 << std::endl;

  std::vector<Future> futures;
  for (int i=0; i!=n_times; ++i) {
    auto args = std::make_tuple(i, dtime, ltype, ctype, urbpoi, do_capsnow, dewmx, frac_veg_nosno);
    TaskLauncher interception_launcher(TaskIDs::CANOPY_HYDROLOGY_INTERCEPTION,
            TaskArgument(&args, sizeof(args)));

    // -- permissions on forcing
    interception_launcher.add_region_requirement(
        RegionRequirement(forcing_lr, READ_ONLY, EXCLUSIVE, forcing_lr));
    interception_launcher.add_field(0, FieldIDs::FORC_RAIN);
    interception_launcher.add_field(0, FieldIDs::FORC_SNOW);
    interception_launcher.add_field(0, FieldIDs::FORC_IRRIG);

    // -- permissions on phenology
    interception_launcher.add_region_requirement(
        RegionRequirement(phenology_lr, READ_ONLY, EXCLUSIVE, phenology_lr));
    interception_launcher.add_field(1, FieldIDs::ELAI);
    interception_launcher.add_field(1, FieldIDs::ESAI);

    // -- permissions on output
    interception_launcher.add_region_requirement(
        RegionRequirement(flux_lr, READ_WRITE, EXCLUSIVE, flux_lr));
    for (auto id : flux_fs_ids) interception_launcher.add_field(2, id);

    // -- launch the interception
    runtime->execute_task(ctx, interception_launcher);

    // launch accumulator for h2ocan
    TaskLauncher accumlate_launcher(TaskIDs::UTIL_SUM_MIN_MAX_REDUCTION, TaskArgument());
    accumlate_launcher.add_region_requirement(
        RegionRequirement(flux_lr, READ_ONLY, EXCLUSIVE, flux_lr));
    accumlate_launcher.add_field(0, FieldIDs::H2O_CAN);
    futures.push_back(runtime->execute_task(ctx, accumlate_launcher));
  }

  int i = 0;
  for (auto future : futures) {
    i++;
    //
    // write out to file
    //  
    auto sum_min_max = future.get_result<std::array<double,3>>();
    soln_file << std::setprecision(16) << i << "\t" << sum_min_max[0]
              << "\t" << sum_min_max[1]
              << "\t" << sum_min_max[2] << std::endl;
  }

  // clean up resources
  soln_file.close();
  runtime->destroy_logical_region(ctx, phenology_lr);
  runtime->destroy_logical_region(ctx, forcing_lr);
  runtime->destroy_logical_region(ctx, flux_lr);
  runtime->destroy_field_space(ctx, phenology_fs);
  runtime->destroy_field_space(ctx, forcing_fs);
  runtime->destroy_field_space(ctx, flux_fs);
  runtime->destroy_index_space(ctx, pft_state_is);
  runtime->destroy_index_space(ctx, forcing_is);
}



// Main just calls top level task
int main(int argc, char **argv)
{
  Runtime::set_top_level_task_id(TaskIDs::TOP_LEVEL_TASK);

  {
    TaskVariantRegistrar registrar(TaskIDs::TOP_LEVEL_TASK, "top_level");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    Runtime::preregister_task_variant<top_level_task>(registrar, "top_level");
  }

  {
    TaskVariantRegistrar registrar(TaskIDs::INIT_PHENOLOGY, "initialize_phenology");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    registrar.set_leaf();
    Runtime::preregister_task_variant<InitPhenology>(registrar, "initialize_phenology");
  }

  {
    TaskVariantRegistrar registrar(TaskIDs::INIT_FORCING, "initialize_forcing");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    registrar.set_leaf();
    Runtime::preregister_task_variant<int,InitForcing>(registrar, "initialize_forcing");
  }


  {
    TaskVariantRegistrar registrar(TaskIDs::CANOPY_HYDROLOGY_INTERCEPTION, "CanopyHydrology_interception");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    registrar.set_leaf();
    Runtime::preregister_task_variant<CanopyHydrology_Interception_task>(registrar, "CanopyHydrology_interception");
  }

  {
    TaskVariantRegistrar registrar(TaskIDs::UTIL_SUM_MIN_MAX_REDUCTION, "sum_min_max_reduction");
    registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
    registrar.set_leaf();
    Runtime::preregister_task_variant<std::array<double,3>,SumMinMaxReduction>(registrar, "sum_min_max_reduction");
  }
  
  return Runtime::start(argc, argv);
}