CanopyHydrology_module.cpp 31.1 KB
Newer Older
1
2
3
4
5
6
7
#include <array>
#include <sstream>
#include <iterator>
#include <exception>
#include <string>
#include <stdlib.h>
#include <cstring>
8
#include <cmath>
9
10
11
12
13
#include <vector>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <Kokkos_Core.hpp>
14
15
16
17
#include "landunit_varcon.h"    
#include "column_varcon.h" 
#include "clm_varpar.h"         
#include "clm_varctl.h"   
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "utils.hh"
#include "readers.hh"

namespace ELM {
namespace Utils {

static const int n_months = 12;
static const int n_pfts = 17;
static const int n_max_times = 31 * 24 * 2; // max days per month times hours per
                                            // day * half hour timestep
static const int n_grid_cells = 24;
static const int n_levels_snow = 5;

using MatrixStatePFT = MatrixStatic<n_grid_cells, n_pfts>;
using MatrixStateSoilColumn = MatrixStatic<n_grid_cells, n_levels_snow>;
using MatrixForc = MatrixStatic<n_max_times,n_grid_cells>;
using VectorColumn = VectorStatic<n_grid_cells>;
using VectorColumnInt = VectorStatic<n_grid_cells,int>;

} // namespace
} // namespace

40
namespace ELM {
41
KOKKOS_INLINE_FUNCTION void CanopyHydrology_Interception(double dtime,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        const double& forc_rain,
        const double& forc_snow,
        const double& irrig_rate,
        const int& ltype, const int& ctype,
        const bool& urbpoi, const bool& do_capsnow,
        const double& elai, const double& esai,
        const double& dewmx, const int& frac_veg_nosno,
        double& h2ocan,
        int n_irrig_steps_left, //fix it
        double& qflx_prec_intr,
        double& qflx_irrig,
        double& qflx_prec_grnd,
        double& qflx_snwcp_liq,
        double& qflx_snwcp_ice,
        double& qflx_snow_grnd_patch,
        double& qflx_rain_grnd)

 {  

  
      double  fpi, xrun, h2ocanmx   ;
      double  qflx_candrip, qflx_through_snow, qflx_through_rain ;
      double  qflx_prec_grnd_snow;
      double  qflx_prec_grnd_rain ;
      double  fracsnow ;
      double  fracrain , forc_irrig;


      if (ltype==istsoil || ltype==istwet || urbpoi || ltype==istcrop) {

         qflx_candrip = 0.0      ;
         qflx_through_snow = 0.0 ;
         qflx_through_rain = 0.0 ;
         qflx_prec_intr = 0.0    ;
         fracsnow = 0.0          ;
         fracrain = 0.0          ;
         forc_irrig = 0.0;


         if (ctype != icol_sunwall && ctype != icol_shadewall) {
            if (frac_veg_nosno == 1 && (forc_rain + forc_snow) > 0.0) {

              
               fracsnow = forc_snow/(forc_snow + forc_rain);
               fracrain = forc_rain/(forc_snow + forc_rain);

               
               h2ocanmx = dewmx * (elai + esai);

               
               fpi = 0.250*(1.0 - exp(-0.50*(elai + esai)));

              
               qflx_through_snow = forc_snow * (1.0-fpi);
               qflx_through_rain = forc_rain * (1.0-fpi);

               
               qflx_prec_intr = (forc_snow + forc_rain) * fpi;
               


               
104
               h2ocan = max(0.0, h2ocan + dtime*qflx_prec_intr);
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

               
               qflx_candrip = 0.0;

               
               xrun = (h2ocan - h2ocanmx)/dtime;

               
               if (xrun > 0.0) {
                  qflx_candrip = xrun;
                  h2ocan = h2ocanmx;
               }

            }
         }

      else if (ltype==istice || ltype==istice_mec) {
         
         h2ocan            = 0.0;
         qflx_candrip      = 0.0;
         qflx_through_snow = 0.0;
         qflx_through_rain = 0.0;
         qflx_prec_intr    = 0.0;
         fracsnow          = 0.0;
         fracrain          = 0.0;

      }

      

      if (ctype != icol_sunwall && ctype != icol_shadewall) {
         if (frac_veg_nosno == 0) {
            qflx_prec_grnd_snow = forc_snow;
            qflx_prec_grnd_rain = forc_rain;  }
         else{
            qflx_prec_grnd_snow = qflx_through_snow + (qflx_candrip * fracsnow);
            qflx_prec_grnd_rain = qflx_through_rain + (qflx_candrip * fracrain);
          }
      }   
      else{
         qflx_prec_grnd_snow = 0.;
         qflx_prec_grnd_rain = 0.;
        }

      
      if (n_irrig_steps_left > 0) {
         qflx_irrig         = forc_irrig;
         n_irrig_steps_left = n_irrig_steps_left - 1; }
      else{
         qflx_irrig = 0.0;
        }

      
      qflx_prec_grnd_rain = qflx_prec_grnd_rain + qflx_irrig;

      

      qflx_prec_grnd = qflx_prec_grnd_snow + qflx_prec_grnd_rain;

      if (do_capsnow) {
         qflx_snwcp_liq = qflx_prec_grnd_rain;
         qflx_snwcp_ice = qflx_prec_grnd_snow;

         qflx_snow_grnd_patch = 0.0;
         qflx_rain_grnd = 0.0;  }
      else{

         qflx_snwcp_liq = 0.0;
         qflx_snwcp_ice = 0.0;
         qflx_snow_grnd_patch = qflx_prec_grnd_snow   ;      //ice onto ground (mm/s)
         qflx_rain_grnd     = qflx_prec_grnd_rain      ;   //liquid water onto ground (mm/s)
        }

    }
  }

}

namespace ELM {

185
KOKKOS_INLINE_FUNCTION void CanopyHydrology_FracWet(const int& frac_veg_nosno,
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        const double& h2ocan,
        const double& elai, 
        const double& esai,
        const double& dewmx,
        double& fwet,
        double& fdry)
{  

  double vegt, dewmxi ;    

  if (frac_veg_nosno == 1) {
    if (h2ocan > 0.0) {
        vegt    = frac_veg_nosno*(elai + esai);
        dewmxi  = 1.00/dewmx;
200
201
        fwet = pow(((dewmxi/vegt)*h2ocan), 2.0/3);
        fwet = min(fwet,1.00);   
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        fdry = (1.0-fwet)*elai/(elai+esai);
      }
    else{
        fwet = 0.0;
        fdry = 0.0 ;
      } }
  else{
     fwet = 0.0;
     fdry = 0.0;
  }

}

}


namespace ELM {

template<typename Array_d>
221
KOKKOS_INLINE_FUNCTION void CanopyHydrology_SnowWater(const double& dtime,
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        const double& qflx_floodg,
        const int& ltype,
        const int& ctype,
        const bool& urbpoi,
        const bool& do_capsnow,                            
        const int& oldfflag,
        const double& forc_air_temp,
        const double& t_grnd,
        const double& qflx_snow_grnd_col,
        const double& qflx_snow_melt,
        const double& n_melt,
        const double& frac_h2osfc,
        double& snow_depth,
        double& h2osno,
        double& integrated_snow,
        Array_d swe_old,
        Array_d h2osoi_liq,
        Array_d h2osoi_ice,
        Array_d t_soisno,
        Array_d frac_iceold,
        int& snow_level,
        Array_d dz,
        Array_d z,
        Array_d zi,
        int& newnode,
        double& qflx_floodc,
        double& qflx_snow_h2osfc,
        double& frac_sno_eff,
        double& frac_sno)
{       
  
  
//parameters
  double rpi=4.0e0*atan(1.0e0)  ;
  double tfrz=273.15;
  double zlnd = 0.010;

  
  // real(r8), intent(inout), dimension(-nlevsno+1:0)  :: swe_old 
  // real(r8), intent(inout), dimension(-nlevsno+1:0) :: h2osoi_liq, h2osoi_ice
  // real(r8), intent(inout), dimension(-nlevsno+1:0)  :: t_soisno, frac_iceold
  // real(r8), intent(inout), dimension(-nlevsno+1:0)  :: dz, z, zi
  
//local variables 
  double  temp_intsnow, temp_snow_depth, z_avg, fmelt, dz_snowf, snowmelt ;
  double  newsnow, bifall, accum_factor, fsno_new, smr ;
  int j ;

//apply gridcell flood water flux to non-lake columns
  if (ctype != icol_sunwall && ctype != icol_shadewall) {      
     qflx_floodc = qflx_floodg; }
  else{
     qflx_floodc = 0.0;
  }

//Determine snow height and snow water

//Use Alta relationship, Anderson(1976); LaChapelle(1961),
//U.S.Department of Agriculture Forest Service, Project F,
//Progress Rep. 1, Alta Avalanche Study Center:Snow Layer Densification.

  qflx_snow_h2osfc = 0.0;
//set temporary variables prior to updating
  temp_snow_depth=snow_depth;
//save initial snow content
  for(j = -nlevsno+1; j < snow_level; j++) {
     swe_old[j] = 0.00;
  }
  for(j = snow_level+1; j < 0; j++) {
     swe_old[j]=h2osoi_liq[j]+h2osoi_ice[j];
  }

  if (do_capsnow) {
     dz_snowf = 0.;
     newsnow = (1. - frac_h2osfc) * qflx_snow_grnd_col * dtime;
     frac_sno=1.;
     integrated_snow = 5.e2; 
  } else {

     if (forc_air_temp > tfrz + 2.) {
302
        bifall=50. + 1.7*pow((17.0),1.5);
303
     } else if (forc_air_temp > tfrz - 15.) {
304
        bifall=50. + 1.7*pow((forc_air_temp - tfrz + 15.),1.5);
305
306
307
308
309
310
311
312
     } else {
        bifall=50.;
     }

     // newsnow is all snow that doesn't fall on h2osfc
     newsnow = (1. - frac_h2osfc) * qflx_snow_grnd_col * dtime;

     // update integrated_snow
313
     integrated_snow = max(integrated_snow,h2osno) ; //h2osno could be larger due to frost
314
315
316
317
318
319
320
321
322
323
324
325
326
327

     // snowmelt from previous time step * dtime
     snowmelt = qflx_snow_melt * dtime;

     // set shape factor for accumulation of snow
     accum_factor=0.1;

     if (h2osno > 0.0) {

        //======================  FSCA PARAMETERIZATIONS  ======================
        // fsca parameterization based on *changes* in swe
        // first compute change from melt during previous time step
        if(snowmelt > 0.) {

328
           smr=min(1.,(h2osno)/(integrated_snow));
329

330
           frac_sno = 1. - pow((acos(fmin(1.,(2.*smr - 1.)))/rpi),(n_melt)) ;
331
332
333
334
335
336
337
338
339

        }

        // update fsca by new snow event, add to previous fsca
        if (newsnow > 0.) {
           fsno_new = 1. - (1. - tanh(accum_factor*newsnow))*(1. - frac_sno);
           frac_sno = fsno_new;

           // reset integrated_snow after accumulation events
340
341
           temp_intsnow= (h2osno + newsnow) / (0.5*(cos(rpi*pow((1.0-max(frac_sno,1e-6)),(1.0/n_melt))+1.0))) ;
           integrated_snow = min(1.e8,temp_intsnow) ;
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        }

        //====================================================================

        // for subgrid fluxes
        if (subgridflag ==1 && ! urbpoi) {
           if (frac_sno > 0.){
              snow_depth=snow_depth + newsnow/(bifall * frac_sno);
           } else {
              snow_depth=0.;
           }
        } else {
           // for uniform snow cover
           snow_depth=snow_depth+newsnow/bifall;
        }

        // use original fsca formulation (n&y 07)
        if (oldfflag == 1) { 
           // snow cover fraction in Niu et al. 2007
           if(snow_depth > 0.0)  {
362
              frac_sno = tanh(snow_depth/(2.5*zlnd*pow((min(800.0,(h2osno+ newsnow)/snow_depth)/100.0),1.0)) ) ;
363
364
           }
           if(h2osno < 1.0)  {
365
              frac_sno=min(frac_sno,h2osno);
366
367
368
369
370
371
372
373
374
375
376
377
           }
        }

     } else { //h2osno == 0
        // initialize frac_sno and snow_depth when no snow present initially
        if (newsnow > 0.) { 
           z_avg = newsnow/bifall;
           fmelt=newsnow;
           frac_sno = tanh(accum_factor*newsnow);

           // make integrated_snow consistent w/ new fsno, h2osno
           integrated_snow = 0. ;//reset prior to adding newsnow below
378
379
           temp_intsnow= (h2osno + newsnow) / (0.5*(cos(rpi*pow((1.0-max(frac_sno,1e-6)),(1.0/n_melt)))+1.0));
           integrated_snow = min(1.e8,temp_intsnow);
380
381
382
383
384
385
386
387
388
389
390

           // update snow_depth and h2osno to be consistent with frac_sno, z_avg
           if (subgridflag ==1 && !urbpoi) {
              snow_depth=z_avg/frac_sno;
           } else {
              snow_depth=newsnow/bifall;
           }
           // use n&y07 formulation
           if (oldfflag == 1) { 
              // snow cover fraction in Niu et al. 2007
              if(snow_depth > 0.0)  {
391
                 frac_sno = tanh(snow_depth/(2.5*zlnd*pow((min(800.0,newsnow/snow_depth)/100.0),1.0)) );
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
              }
           }
        } else {
           z_avg = 0.;
           snow_depth = 0.;
           frac_sno = 0.;
        }
     } // end of h2osno > 0

     // snow directly falling on surface water melts, increases h2osfc
     qflx_snow_h2osfc = frac_h2osfc*qflx_snow_grnd_col;

     // update h2osno for new snow
     h2osno = h2osno + newsnow ;
     integrated_snow = integrated_snow + newsnow;

     // update change in snow depth
     dz_snowf = (snow_depth - temp_snow_depth) / dtime;

  } //end of do_capsnow construct

  // set frac_sno_eff variable
  if (ltype == istsoil || ltype == istcrop) {
     if (subgridflag ==1) { 
        frac_sno_eff = frac_sno;
     } else {
        frac_sno_eff = 1.;
     }
  } else {
     frac_sno_eff = 1.;
  }

  if (ltype==istwet && t_grnd>tfrz) {
     h2osno=0.;
     snow_depth=0.;
  }

//When the snow accumulation exceeds 10 mm, initialize snow layer
//Currently, the water temperature for the precipitation is simply set
//as the surface air temperature
  newnode = 0 ; //flag for when snow node will be initialized
        if (snow_level == 0 && qflx_snow_grnd_col > 0.00 && frac_sno*snow_depth >= 0.010) {
           newnode = 1;
           snow_level = -1;
           dz[0] = snow_depth ;                    //meter
           z[0] = -0.50*dz[0];
           zi[-1] = -dz[0];
           t_soisno[0] = fmin(tfrz, forc_air_temp) ;   //K
           h2osoi_ice[0] = h2osno ;            //kg/m2
           h2osoi_liq[0] = 0.0  ;               //kg/m2
           frac_iceold[0] = 1.0;
        }

//The change of ice partial density of surface node due to precipitation.
//Only ice part of snowfall is added here, the liquid part will be added
//later.
        if (snow_level < 0 && newnode == 0) {
        h2osoi_ice[snow_level+1] = h2osoi_ice[snow_level+1]+newsnow;
        dz[snow_level+1] = dz[snow_level+1]+dz_snowf*dtime;
        }
  }
 }

namespace ELM {

457
KOKKOS_INLINE_FUNCTION void CanopyHydrology_FracH2OSfc(const double& dtime,
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        const double& min_h2osfc,
        const int& ltype,
        const double& micro_sigma,
        double& h2osno,
        double& h2osfc,
        double& h2osoi_liq,
        double& frac_sno,
        double& frac_sno_eff,
        double& qflx_h2osfc2topsoi,
        double& frac_h2osfc)
  {
    bool no_update = false;
    double shr_const_pi=4.0e0*atan(1.0e0) ;
    bool no_update_l ;

    
    double d,fd,dfdd,sigma   ;

    if (!no_update) { 
      no_update_l = false; }
    else { no_update_l = no_update; }
    
    qflx_h2osfc2topsoi = 0.0 ;
    
    if ( ltype  == istsoil || ltype == istcrop) {

       

       if (h2osfc > min_h2osfc) {
          
          d=0.0 ;

          sigma=1.0e3 * micro_sigma ;
          for(int l = 0 ; l < 10; l++) {
492
             fd = 0.5*d*(1.00+erf(d/(sigma*sqrt(2.0)))) + sigma/sqrt(2.0*shr_const_pi)*exp(-pow(d,2)/(2.0*pow(sigma,2))) -h2osfc;
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
             dfdd = 0.5*(1.00+erf(d/(sigma*sqrt(2.0))));

             d = d - fd/dfdd;
          }
          
          frac_h2osfc = 0.5*(1.00+erf(d/(sigma*sqrt(2.0)))) ;  }

       else {
          frac_h2osfc = 0.0 ;
          h2osoi_liq = h2osoi_liq + h2osfc ;
          qflx_h2osfc2topsoi = h2osfc/dtime ;
          h2osfc=0.0 ;
        }

       if (!no_update_l) {

          
          if (frac_sno > (1.0 - frac_h2osfc) && h2osno > 0) {

             if (frac_h2osfc > 0.010) {
513
                frac_h2osfc = max(1.00 - frac_sno,0.010) ;
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
                frac_sno = 1.00 - frac_h2osfc; }
             else {
                frac_sno = 1.00 - frac_h2osfc;
              }
             
             frac_sno_eff=frac_sno;

          }

       } 
    }  
    else {

       frac_h2osfc = 0.0;

    }

  }

}



537
538
539
540
541
542
543

int main(int argc, char ** argv)
{
  using ELM::Utils::n_months;
  using ELM::Utils::n_pfts;
  using ELM::Utils::n_grid_cells;
  using ELM::Utils::n_max_times;
544
  using ELM::Utils::n_levels_snow;
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  
  // fixed magic parameters for now
  const int ctype = 1;
  const int ltype = 1;
  const bool urbpoi = false;
  const bool do_capsnow = false;
  const int frac_veg_nosno = 1;
  int n_irrig_steps_left = 0;

  const double dewmx = 0.1;
  const double dtime = 1800.0;

  // fixed magic parameters for SnowWater
  const double qflx_snow_melt = 0.;

  // fixed magic parameters for fracH2Osfc  
  const int oldfflag = 0;
  const double micro_sigma = 0.1;
  const double min_h2osfc = 1.0e-8;
  const double n_melt = 0.7;
565
  double qflx_floodg = 0.0;
566
567
568
569
570
571
  
  Kokkos::initialize( argc, argv );
  {                             
  // phenology input
  typedef Kokkos::View<double*>   ViewVectorType;
  typedef Kokkos::View<double**>  ViewMatrixType;
572
573
  typedef Kokkos::View<int**>  ViewMatrixType1;
  typedef Kokkos::View<int*>   ViewVectorType1;
574
575
  // ELM::Utils::MatrixState elai;
  // ELM::Utils::MatrixState esai;
576
577
  ViewMatrixType elai( "elai", n_grid_cells, n_pfts );
  ViewMatrixType esai( "esai", n_grid_cells, n_pfts );
578
579
580
581
582
583
584
585
586
587
588
589
590
  ViewMatrixType::HostMirror h_elai = Kokkos::create_mirror_view( elai );
  ViewMatrixType::HostMirror h_esai = Kokkos::create_mirror_view( esai );
  ELM::Utils::read_phenology("../links/surfacedataWBW.nc", n_months, n_pfts, 0, h_elai, h_esai);
  ELM::Utils::read_phenology("../links/surfacedataBRW.nc", n_months, n_pfts, n_months, h_elai, h_esai);

  // forcing input
  ViewMatrixType forc_rain( "forc_rain", n_max_times,n_grid_cells );
  ViewMatrixType forc_snow( "forc_snow", n_max_times,n_grid_cells );
  ViewMatrixType forc_air_temp( "forc_air_temp", n_max_times,n_grid_cells );
  ViewMatrixType::HostMirror h_forc_rain = Kokkos::create_mirror_view( forc_rain );
  ViewMatrixType::HostMirror h_forc_snow = Kokkos::create_mirror_view( forc_snow );
  ViewMatrixType::HostMirror h_forc_air_temp = Kokkos::create_mirror_view( forc_air_temp );
  const int n_times = ELM::Utils::read_forcing("../links/forcing", n_max_times, 0, n_grid_cells, h_forc_rain, h_forc_snow, h_forc_air_temp);
591
592
593
594
  // ELM::Utils::MatrixForc forc_irrig; forc_irrig = 0.;
  ViewMatrixType forc_irrig( "forc_irrig", n_max_times,n_grid_cells );
  ViewMatrixType::HostMirror h_forc_irrig = Kokkos::create_mirror_view( forc_irrig );
  
595
596
597
598
599

  
  // mesh input (though can also change as snow layers evolve)
  //
  // NOTE: in a real case, these would be populated, but we don't actually
600
  // // need them to be for these kernels. --etc
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
  // auto z = ELM::Utils::MatrixStateSoilColumn(0.);
  // auto zi = ELM::Utils::MatrixStateSoilColumn(0.);
  // auto dz = ELM::Utils::MatrixStateSoilColumn(0.);
  ViewMatrixType z( "z", n_grid_cells, n_levels_snow );
  ViewMatrixType zi( "zi", n_grid_cells, n_levels_snow );
  ViewMatrixType dz( "dz", n_grid_cells, n_levels_snow );
  ViewMatrixType::HostMirror h_z = Kokkos::create_mirror_view( z );
  ViewMatrixType::HostMirror h_zi = Kokkos::create_mirror_view( zi );
  ViewMatrixType::HostMirror h_dz = Kokkos::create_mirror_view( dz );

  // state variables that require ICs and evolve (in/out)
  // auto h2ocan = ELM::Utils::MatrixStatePFT(0.);
  // auto swe_old = ELM::Utils::MatrixStateSoilColumn(0.);
  // auto h2osoi_liq = ELM::Utils::MatrixStateSoilColumn(0.);
  // auto h2osoi_ice = ELM::Utils::MatrixStateSoilColumn(0.);
  // auto t_soisno = ELM::Utils::MatrixStateSoilColumn(0.);
  // auto frac_iceold = ELM::Utils::MatrixStateSoilColumn(0.);
  ViewMatrixType h2ocan( "h2ocan", n_grid_cells, n_pfts );
  ViewMatrixType swe_old( "swe_old", n_grid_cells, n_levels_snow );
  ViewMatrixType h2osoi_liq( "h2osoi_liq", n_grid_cells, n_levels_snow );
  ViewMatrixType h2osoi_ice( "h2osoi_ice", n_grid_cells, n_levels_snow );
  ViewMatrixType t_soisno( "t_soisno", n_grid_cells, n_levels_snow );
  ViewMatrixType frac_iceold( "frac_iceold", n_grid_cells, n_levels_snow );
  ViewMatrixType::HostMirror h_h2ocan = Kokkos::create_mirror_view( h2ocan );
  ViewMatrixType::HostMirror h_swe_old = Kokkos::create_mirror_view( swe_old );
  ViewMatrixType::HostMirror h_h2osoi_liq = Kokkos::create_mirror_view( h2osoi_liq );
  ViewMatrixType::HostMirror h_h2osoi_ice = Kokkos::create_mirror_view( h2osoi_ice );
  ViewMatrixType::HostMirror h_t_soisno = Kokkos::create_mirror_view( t_soisno );
  ViewMatrixType::HostMirror h_frac_iceold = Kokkos::create_mirror_view( frac_iceold );

  // auto t_grnd = ELM::Utils::VectorColumn(0.);
  // auto h2osno = ELM::Utils::VectorColumn(0.);
  // auto snow_depth = ELM::Utils::VectorColumn(0.);
  // auto snl = ELM::Utils::VectorColumnInt(0.); // note this tracks the snow_depth
  ViewVectorType t_grnd( "t_grnd", n_grid_cells );
  ViewVectorType h2osno( "h2osno", n_grid_cells );
  ViewVectorType snow_depth( "snow_depth", n_grid_cells );
638
  ViewVectorType1 snow_level( "snow_level", n_grid_cells );
639
640
641
  ViewVectorType::HostMirror h_t_grnd = Kokkos::create_mirror_view(  t_grnd);
  ViewVectorType::HostMirror h_h2osno = Kokkos::create_mirror_view( h2osno);
  ViewVectorType::HostMirror h_snow_depth = Kokkos::create_mirror_view(  snow_depth);
642
  ViewVectorType1::HostMirror h_snow_level = Kokkos::create_mirror_view( snow_level);
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

  // auto h2osfc = ELM::Utils::VectorColumn(0.);
  // auto frac_h2osfc = ELM::Utils::VectorColumn(0.);
  ViewVectorType h2osfc( "h2osfc", n_grid_cells );
  ViewVectorType frac_h2osfc( "frac_h2osfc", n_grid_cells );
  ViewVectorType::HostMirror h_h2osfc = Kokkos::create_mirror_view(  h2osfc);
  ViewVectorType::HostMirror h_frac_h2osfc = Kokkos::create_mirror_view( frac_h2osfc);

  
  // output fluxes by pft
  // auto qflx_prec_intr = ELM::Utils::MatrixStatePFT();
  // auto qflx_irrig = ELM::Utils::MatrixStatePFT();
  // auto qflx_prec_grnd = ELM::Utils::MatrixStatePFT();
  // auto qflx_snwcp_liq = ELM::Utils::MatrixStatePFT();
  // auto qflx_snwcp_ice = ELM::Utils::MatrixStatePFT();
  // auto qflx_snow_grnd_patch = ELM::Utils::MatrixStatePFT();
  // auto qflx_rain_grnd = ELM::Utils::MatrixStatePFT();
  ViewMatrixType qflx_prec_intr( "qflx_prec_intr", n_grid_cells, n_pfts );
  ViewMatrixType qflx_irrig( "qflx_irrig", n_grid_cells, n_pfts  );
  ViewMatrixType qflx_prec_grnd( "qflx_prec_grnd", n_grid_cells, n_pfts  );
  ViewMatrixType qflx_snwcp_liq( "qflx_snwcp_liq", n_grid_cells, n_pfts );
  ViewMatrixType qflx_snwcp_ice ( "qflx_snwcp_ice ", n_grid_cells, n_pfts  );
  ViewMatrixType qflx_snow_grnd_patch( "qflx_snow_grnd_patch", n_grid_cells, n_pfts  );
  ViewMatrixType qflx_rain_grnd( "qflx_rain_grnd", n_grid_cells, n_pfts  );
  ViewMatrixType::HostMirror h_qflx_prec_intr = Kokkos::create_mirror_view( qflx_prec_intr );
  ViewMatrixType::HostMirror h_qflx_irrig = Kokkos::create_mirror_view( qflx_irrig);
  ViewMatrixType::HostMirror h_qflx_prec_grnd = Kokkos::create_mirror_view( qflx_prec_grnd);
  ViewMatrixType::HostMirror h_qflx_snwcp_liq = Kokkos::create_mirror_view(  qflx_snwcp_liq);
  ViewMatrixType::HostMirror h_qflx_snwcp_ice = Kokkos::create_mirror_view( qflx_snwcp_ice   );
  ViewMatrixType::HostMirror h_qflx_snow_grnd_patch = Kokkos::create_mirror_view( qflx_snow_grnd_patch );
  ViewMatrixType::HostMirror h_qflx_rain_grnd = Kokkos::create_mirror_view(  qflx_rain_grnd  );

  // FIXME: I have no clue what this is... it is inout on WaterSnow.  For now I
  // am guessing the data structure. Ask Scott.  --etc
677
678
679
  //auto integrated_snow = ELM::Utils::VectorColumn(0.);
  ViewVectorType integrated_snow( "integrated_snow", n_grid_cells );
  ViewVectorType::HostMirror h_integrated_snow = Kokkos::create_mirror_view(  integrated_snow);
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
  
  // output fluxes, state by the column
  // auto qflx_snow_grnd_col = ELM::Utils::VectorColumn();
  // auto qflx_snow_h2osfc = ELM::Utils::VectorColumn();
  // auto qflx_h2osfc2topsoi = ELM::Utils::VectorColumn();
  // auto qflx_floodc = ELM::Utils::VectorColumn();
  ViewVectorType qflx_snow_grnd_col( "qflx_snow_grnd_col", n_grid_cells );
  ViewVectorType qflx_snow_h2osfc( "qflx_snow_h2osfc", n_grid_cells );
  ViewVectorType qflx_h2osfc2topsoi( "qflx_h2osfc2topsoi", n_grid_cells );
  ViewVectorType qflx_floodc( "qflx_floodc", n_grid_cells );
  ViewVectorType::HostMirror h_qflx_snow_grnd_col = Kokkos::create_mirror_view(  qflx_snow_grnd_col);
  ViewVectorType::HostMirror h_qflx_snow_h2osfc = Kokkos::create_mirror_view( qflx_snow_h2osfc);
  ViewVectorType::HostMirror h_qflx_h2osfc2topsoi = Kokkos::create_mirror_view(  qflx_h2osfc2topsoi);
  ViewVectorType::HostMirror h_qflx_floodc = Kokkos::create_mirror_view( qflx_floodc);

  // auto frac_sno_eff = ELM::Utils::VectorColumn();
  // auto frac_sno = ELM::Utils::VectorColumn();
  ViewVectorType frac_sno_eff( "frac_sno_eff", n_grid_cells );
  ViewVectorType frac_sno( "frac_sno", n_grid_cells );
  ViewVectorType::HostMirror h_frac_sno_eff = Kokkos::create_mirror_view(  frac_sno_eff);
  ViewVectorType::HostMirror h_frac_sno = Kokkos::create_mirror_view( frac_sno);
  

  // std::cout << "Time\t Total Canopy Water\t Min Water\t Max Water" << std::endl;
704
  // auto min_max = std::minmax_element(&h_h2ocan(0,0), end1+1);
705
  // std::cout << std::minmax_element(16)
706
  //           << 0 << "\t" << std::accumulate(&h_h2ocan(0,0), end1+1, 0.)
707
708
  //           << "\t" << *min_max.first
  //           << "\t" << *min_max.second << std::endl;
709
710

    
711
712
713
714
715
  
  Kokkos::deep_copy( elai, h_elai);
  Kokkos::deep_copy( esai, h_esai);
  Kokkos::deep_copy( forc_rain, h_forc_rain);
  Kokkos::deep_copy( forc_snow, h_forc_snow);
716
  Kokkos::deep_copy( forc_irrig, h_forc_irrig);
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
  Kokkos::deep_copy( forc_air_temp, h_forc_air_temp);
  Kokkos::deep_copy( z, h_z);
  Kokkos::deep_copy( zi, h_zi);
  Kokkos::deep_copy( dz, h_dz);
  Kokkos::deep_copy( h2ocan, h_h2ocan);
  Kokkos::deep_copy( swe_old, h_swe_old);
  Kokkos::deep_copy( h2osoi_liq, h_h2osoi_liq);
  Kokkos::deep_copy( h2osoi_ice, h_h2osoi_ice);
  Kokkos::deep_copy( t_soisno, h_t_soisno);
  Kokkos::deep_copy( frac_iceold, h_frac_iceold);
  Kokkos::deep_copy( t_grnd, h_t_grnd);
  Kokkos::deep_copy( h2osno, h_h2osno);
  Kokkos::deep_copy( snow_depth, h_snow_depth);
  Kokkos::deep_copy( snow_level, h_snow_level);
  Kokkos::deep_copy( h2osfc, h_h2osfc);
  Kokkos::deep_copy( frac_h2osfc, h_frac_h2osfc);
  Kokkos::deep_copy( qflx_prec_intr,h_qflx_prec_intr);
  Kokkos::deep_copy( qflx_irrig,h_qflx_irrig);
  Kokkos::deep_copy( qflx_prec_grnd,h_qflx_prec_grnd);
  Kokkos::deep_copy( qflx_snwcp_liq,h_qflx_snwcp_liq);
  Kokkos::deep_copy( qflx_snwcp_ice,h_qflx_snwcp_ice);
  Kokkos::deep_copy( qflx_snow_grnd_patch,h_qflx_snow_grnd_patch);
  Kokkos::deep_copy( qflx_rain_grnd,h_qflx_rain_grnd);
740
  Kokkos::deep_copy( integrated_snow,h_integrated_snow);
741
742
743
744
745
746
747
  Kokkos::deep_copy( qflx_snow_grnd_col, h_qflx_snow_grnd_col);
  Kokkos::deep_copy( qflx_snow_h2osfc, h_qflx_snow_h2osfc);
  Kokkos::deep_copy( qflx_h2osfc2topsoi, h_qflx_h2osfc2topsoi);
  Kokkos::deep_copy( qflx_floodc, h_qflx_floodc);
  Kokkos::deep_copy( frac_sno_eff, h_frac_sno_eff);
  Kokkos::deep_copy( frac_sno, h_frac_sno);

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
  double* end1 = &h_h2ocan(n_grid_cells-1, n_pfts-1) ;
  double* end2 = &h_h2osno(n_grid_cells-1) ;
  double* end3 = &h_frac_h2osfc(n_grid_cells-1) ;
  std::cout << "Time\t Total Canopy Water\t Min Water\t Max Water\t Total Snow\t Min Snow\t Max Snow\t Avg Frac Sfc\t Min Frac Sfc\t Max Frac Sfc" << std::endl;
  auto min_max_water = std::minmax_element(&h_h2ocan(0,0), end1+1);
  auto sum_water = std::accumulate(&h_h2ocan(0,0), end1+1, 0.);

  auto min_max_snow = std::minmax_element(&h_h2osno(0), end2+1);
  auto sum_snow = std::accumulate(&h_h2osno(0), end2+1, 0.);

  auto min_max_frac_sfc = std::minmax_element(&h_frac_h2osfc(0), end3+1);
  auto avg_frac_sfc = std::accumulate(&h_frac_h2osfc(0), end3+1, 0.) / (end3+1 - &h_frac_h2osfc(0));

  std::cout << std::setprecision(16)
            << 0 << "\t" << sum_water << "\t" << *min_max_water.first << "\t" << *min_max_water.second
            << "\t" << sum_snow << "\t" << *min_max_snow.first << "\t" << *min_max_snow.second
            << "\t" << avg_frac_sfc << "\t" << *min_max_frac_sfc.first << "\t" << *min_max_frac_sfc.second << std::endl;

766
767
768
769
770
771
772
773
774
775

  // main loop
  // -- the timestep loop cannot/should not be parallelized
  for (size_t t = 0; t != n_times; ++t) {

    // grid cell and/or pft loop can be parallelized
    //for (size_t g = 0; g != n_grid_cells; ++g) {

      // PFT level operations
      //for (size_t p = 0; p != n_pfts; ++p) {
776
    Kokkos::parallel_for("n_grid_cells", n_grid_cells, KOKKOS_LAMBDA (const size_t& g) {
777
      for (size_t p = 0; p != n_pfts; ++p) {
778
779
780
781
        //
        // Calculate interception
        //
        // NOTE: this currently punts on what to do with the qflx variables!
782
        // Surely they should be either std::accumulated or stored on PFTs as well.
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        // --etc
        ELM::CanopyHydrology_Interception(dtime,
                forc_rain(t,g), forc_snow(t,g), forc_irrig(t,g),
                ltype, ctype, urbpoi, do_capsnow,
                elai(g,p), esai(g,p), dewmx, frac_veg_nosno,
                h2ocan(g,p), n_irrig_steps_left,
                qflx_prec_intr(g,p), qflx_irrig(g,p), qflx_prec_grnd(g,p),
                qflx_snwcp_liq(g,p), qflx_snwcp_ice(g,p),
                qflx_snow_grnd_patch(g,p), qflx_rain_grnd(g,p));
        //printf("%i %i %16.8g %16.8g %16.8g %16.8g %16.8g %16.8g\n", g, p, forc_rain(t,g), forc_snow(t,g), elai(g,p), esai(g,p), h2ocan(g,p), qflx_prec_intr(g));

        //
        // Calculate fraction of LAI that is wet vs dry.
        //
        // FIXME: this currently punts on what to do with the fwet/fdry variables.
        // Surely they should be something, as such this is dead code.
        // By the PFT?
        // --etc
        double fwet = 0., fdry = 0.;
        ELM::CanopyHydrology_FracWet(frac_veg_nosno, h2ocan(g,p), elai(g,p), esai(g,p), dewmx, fwet, fdry);
803
      } // end PFT loop
804
805

      // Column level operations
806
      
807
      double* qpatch = &qflx_snow_grnd_patch(n_grid_cells-1, n_pfts-1);
808
      // NOTE: this is effectively an accumulation kernel/task! --etc
809
      qflx_snow_grnd_col(g) = std::accumulate(&qflx_snow_grnd_patch(0,0), qpatch+1, 0.);
810
811
812
813
814
815

      // Calculate ?water balance? on the snow column, adding throughfall,
      // removing melt, etc.
      //
      // local outputs
      int newnode;
816

817
818
819
820
      ELM::CanopyHydrology_SnowWater(dtime, qflx_floodg,
              ltype, ctype, urbpoi, do_capsnow, oldfflag,
              forc_air_temp(t,g), t_grnd(g),
              qflx_snow_grnd_col(g), qflx_snow_melt, n_melt, frac_h2osfc(g),
821
              snow_depth(g), h2osno(g), integrated_snow(g), Kokkos::subview(swe_old, g , Kokkos::ALL),
822
823
              Kokkos::subview(h2osoi_liq, g , Kokkos::ALL), Kokkos::subview(h2osoi_ice, g , Kokkos::ALL), Kokkos::subview(t_soisno, g , Kokkos::ALL), Kokkos::subview(frac_iceold, g , Kokkos::ALL),
              snow_level(g), Kokkos::subview(dz, g , Kokkos::ALL), Kokkos::subview(z, g , Kokkos::ALL), Kokkos::subview(zi, g , Kokkos::ALL), newnode,
824
825
826
827
828
829
830
831
832
833
834
835
836
837
              qflx_floodc(g), qflx_snow_h2osfc(g), frac_sno_eff(g), frac_sno(g));

      // Calculate Fraction of Water to the Surface?
      //
      // FIXME: Fortran black magic... h2osoi_liq is a vector, but the
      // interface specifies a single double.  For now passing the 0th
      // entry. --etc
      ELM::CanopyHydrology_FracH2OSfc(dtime, min_h2osfc, ltype, micro_sigma,
              h2osno(g), h2osfc(g), h2osoi_liq(g,0), frac_sno(g), frac_sno_eff(g),
              qflx_h2osfc2topsoi(g), frac_h2osfc(g));
      
    }); // end grid cell loop

    
838
    // auto min_max = std::minmax_element(&h_h2ocan(0,0), end1+1);
839
    // std::cout << std::minmax_element(16)
840
    //           << t+1 << "\t" << std::accumulate(&h_h2ocan(0,0), end1+1, 0.)
841
842
843
    //           << "\t" << *min_max.first
    //           << "\t" << *min_max.second << std::endl;

844
845
846
847
848
849
850
851
852
853
854
855
856
857
    auto min_max_water = std::minmax_element(&h_h2ocan(0,0), end1+1);
    auto sum_water = std::accumulate(&h_h2ocan(0,0), end1+1, 0.);

    auto min_max_snow = std::minmax_element(&h_h2osno(0), end2+1);
    auto sum_snow = std::accumulate(&h_h2osno(0), end2+1, 0.);

    auto min_max_frac_sfc = std::minmax_element(&h_frac_h2osfc(0), end3+1);
    auto avg_frac_sfc = std::accumulate(&h_frac_h2osfc(0), end3+1, 0.) / (end3+1 - &h_frac_h2osfc(0));
                  
    std::cout << std::setprecision(16)
              << 0 << "\t" << sum_water << "\t" << *min_max_water.first << "\t" << *min_max_water.second
              << "\t" << sum_snow << "\t" << *min_max_snow.first << "\t" << *min_max_snow.second
              << "\t" << avg_frac_sfc << "\t" << *min_max_frac_sfc.first << "\t" << *min_max_frac_sfc.second << std::endl;

858
859
860
861
862
  } // end timestep loop
  }
  Kokkos::finalize();
  return 0;
}