From 009ec563a3ec108b64bf07327c6dd3b3f3864bc2 Mon Sep 17 00:00:00 2001
From: ssomnath <somnaths@ornl.gov>
Date: Tue, 20 Sep 2016 10:34:24 -0400
Subject: [PATCH] Gathered all plot functions All plot functions now in
 plot_utils

---
 pycroscopy/io/translators/be_utils.py | 161 +-----
 pycroscopy/viz/plot_utils.py          | 681 +++++++++++++++++++++++++-
 2 files changed, 680 insertions(+), 162 deletions(-)

diff --git a/pycroscopy/io/translators/be_utils.py b/pycroscopy/io/translators/be_utils.py
index c394f72b..4a306745 100644
--- a/pycroscopy/io/translators/be_utils.py
+++ b/pycroscopy/io/translators/be_utils.py
@@ -8,12 +8,13 @@ Created on Tue Jan 05 07:55:56 2016
 import numpy as np
 from os import path
 from warnings import warn
+import matplotlib.pyplot as plt
 from ..microdata import MicroDataset,MicroDataGroup
-from ..beutils import getSliceForExcWfm,getActiveUDVSsteps,maxReadPixels
+from ..be_hdf_utils import getActiveUDVSsteps,maxReadPixels
 from ..io_utils import getAvailableMem
 from ..hdf_utils import getAuxData, getDataSet, getH5DsetRefs
 from ..io_hdf5 import ioHDF5
-import matplotlib.pyplot as plt
+from ...viz.plot_utils import plot1DSpectrum, plot2DSpectrogram, plotHistgrams
 from ...processing.procUtils import buildHistogram
 import h5py
 
@@ -487,163 +488,7 @@ def reshapeMeanData(spec_inds, step_inds, mean_resp):
     return (step_averaged_vec, mean_spectrogram)
     
 ###############################################################################
-    
-def plot1DSpectrum(data_vec,freq,title, figure_path=None):
-    """
-    Plots the Step averaged BE response
-    
-    Parameters
-    ------------
-    data_vec : 1D numpy array
-        Response of one BE pulse
-    freq : 1D numpy array
-        BE frequency that serves as the X axis of the plot
-    title : String
-        Plot group name
-    figure_path : String / Unicode
-        Absolute path of the file to write the figure to
-        
-    Returns
-    ---------
-    fig : Matplotlib.pyplot figure
-        Figure handle
-    ax : Matplotlib.pyplot axis 
-        Axis handle
-    """    
-    if len(data_vec) != len(freq):
-#         print '1D:',data_vec.shape, freq.shape
-        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
-        return
-    freq = freq*1E-3 # to kHz
-    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
-    ax[0].plot(freq,np.abs(data_vec)*1E+3)
-    ax[0].set_title('Amplitude (mV)')
-    #ax[0].set_xlabel('Frequency (kHz)')
-    ax[1].plot(freq,np.angle(data_vec)*180/np.pi)
-    ax[1].set_title('Phase (deg)')
-    ax[1].set_xlabel('Frequency (kHz)')
-    fig.suptitle(title + ': mean UDVS, mean spatial response')
-    if figure_path:
-        plt.savefig(figure_path, format='png', dpi=300)
-    return (fig,ax)
-    
-###############################################################################
-    
-def plot2DSpectrogram(mean_spectrogram,freq,title, figure_path=None):
-    """
-    Plots the position averaged spectrogram
-    
-    Parameters
-    ------------
-    mean_spectrogram : 2D numpy complex array
-        Means spectrogram arranged as [frequency, UDVS step]
-    freq : 1D numpy float array
-        BE frequency that serves as the X axis of the plot
-    title : String
-        Plot group name
-    figure_path : String / Unicode
-        Absolute path of the file to write the figure to
-        
-    Returns
-    ---------
-    fig : Matplotlib.pyplot figure
-        Figure handle
-    ax : Matplotlib.pyplot axis 
-        Axis handle
-    """    
-    if mean_spectrogram.shape[1] != len(freq):
-        #  print '2D:',mean_spectrogram.shape, freq.shape
-        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
-        return
-    freq = freq*1E-3 # to kHz
-    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
-    #print mean_spectrogram.shape
-    #print freq.shape
-    ax[0].imshow(np.abs(mean_spectrogram),interpolation='nearest', extent=[freq[0],freq[-1],mean_spectrogram.shape[0],0])
-    ax[0].set_title('Amplitude')
-    #ax[0].set_xticks(freq)
-    #ax[0].set_ylabel('UDVS Step')
-    ax[0].axis('tight')
-    ax[1].imshow(np.angle(mean_spectrogram),interpolation='nearest', extent=[freq[0],freq[-1],mean_spectrogram.shape[0],0])
-    ax[1].set_title('Phase')
-    ax[1].set_xlabel('Frequency (kHz)')
-    #ax[0].set_ylabel('UDVS Step')
-    ax[1].axis('tight')
-    fig.suptitle(title)
-    if figure_path:
-        plt.savefig(figure_path, format='png', dpi=300)
-    return (fig,ax)
-    
-###############################################################################
-    
-def plotHistgrams(p_hist,p_hbins,title,figure_path=None):
-    """
-    Plots the position averaged spectrogram
-    
-    Parameters
-    ------------
-    p_hist : 2D numpy array
-        histogram data arranged as [physical quantity, frequency bin]
-    p_hbins : 1D numpy array
-        BE frequency that serves as the X axis of the plot
-    title : String
-        Plot group name
-    figure_path : String / Unicode
-        Absolute path of the file to write the figure to
-        
-    Returns
-    ---------
-    fig : Matplotlib.pyplot figure
-        Figure handle
-    """    
-    
-    base_fig_size = 7
-    h_fig = base_fig_size
-    w_fig = base_fig_size*4
- 
-    fig = plt.figure(figsize=(w_fig,h_fig))
-    fig.suptitle(title)
-    iplot = 0
-    
-    p_Nx,p_Ny = np.amax(p_hbins,axis=1)+1
-    
-    p_hist = np.reshape(p_hist, (4,p_Ny,p_Nx))
-    
-    iplot +=1
-    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
-    p_plot = fig.add_subplot(1,4,iplot, title = p_plot_title)
-    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])),interpolation='nearest')
-    p_plot.axis('tight')
-    fig.colorbar(p_im,fraction=0.1)
-    
-    iplot +=1
-    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
-    p_plot = fig.add_subplot(1,4,iplot, title = p_plot_title)
-    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])),interpolation='nearest')
-    p_plot.axis('tight')
-    fig.colorbar(p_im,fraction=0.1)
-    
-    iplot +=1
-    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
-    p_plot = fig.add_subplot(1,4,iplot, title = p_plot_title)
-    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])),interpolation='nearest')
-    p_plot.axis('tight')
-    fig.colorbar(p_im,fraction=0.1)
-     
-    iplot +=1
-    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
-    p_plot = fig.add_subplot(1,4,iplot, title = p_plot_title)
-    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])),interpolation='nearest')
-    p_plot.axis('tight')
-    fig.colorbar(p_im,fraction=0.1)         
-    
-    if figure_path:
-        plt.savefig(figure_path, format='png')
-    
-    return fig
 
-###############################################################################
-    
 def visualizePlotGroups(h5_filepath):
     """
     Visualizes the plot groups present in the provided BE data file
diff --git a/pycroscopy/viz/plot_utils.py b/pycroscopy/viz/plot_utils.py
index 786785fa..99328d89 100644
--- a/pycroscopy/viz/plot_utils.py
+++ b/pycroscopy/viz/plot_utils.py
@@ -5,13 +5,14 @@ Created on Thu May 05 13:29:12 2016
 @author: Suhas Somnath
 """
 from __future__ import division # int/int = float
-from os import path
-from warnings import warn
 import numpy as np
 import matplotlib.pyplot as plt
-from ..io.hdf_utils import getDataSet, getAuxData, findH5group
-from ..analysis.be_sho_utils import getGoodLims
 import h5py
+from scipy.cluster.hierarchy import linkage, dendrogram
+from scipy.spatial.distance import pdist
+from warnings import warn
+from mpl_toolkits.axes_grid1 import make_axes_locatable
+from ..analysis.be_sho_utils import getGoodLims
 
 ###############################################################################
 
@@ -223,3 +224,675 @@ def plotVSsnapshots(resp_mat, title='', stdevs=2, save_path=None):
     if save_path:
         fig.savefig(save_path, format='png', dpi=300)
 
+
+def plotSpectrograms(eigenvectors, num_comps=4, title='Eigenvectors', xlabel='Step', stdevs=2,
+                     show_colorbar=True):
+    '''
+    Plots the provided spectrograms from SVD V vector
+
+    Parameters:
+    -------------
+    eigenvectors : 3D numpy complex matrices
+        Eigenvectors rearranged as - [row, col, component]
+
+
+    xaxis : 1D real numpy array
+        The vector to plot against
+    num_comps : int
+        Number of components to plot
+    title : String
+        Title to plot above everything else
+    xlabel : String
+        Label for x axis
+    stdevs : int
+        Number of standard deviations to consider for plotting
+
+    Returns:
+    ---------
+    fig, axes
+    '''
+    import matplotlib.pyplot as plt
+    fig_h, fig_w = (4, 4 + show_colorbar * 1.00)
+    p_rows = int(np.ceil(np.sqrt(num_comps)))
+    p_cols = int(np.floor(num_comps / p_rows))
+    fig201, axes201 = plt.subplots(p_rows, p_cols, figsize=(p_cols * fig_w, p_rows * fig_h))
+    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
+    fig201.canvas.set_window_title(title)
+
+    for index in xrange(num_comps):
+        cur_map = np.transpose(eigenvectors[index, :, :])
+        ax = axes201.flat[index]
+        (mean, std) = getGoodLims(cur_map)
+        ax.imshow(cur_map, cmap='jet',
+                  vmin=mean - stdevs * std,
+                  vmax=mean + stdevs * std)
+        ax.set_title('Eigenvector: %d' % (index + 1))
+        ax.set_aspect('auto')
+        ax.set_xlabel(xlabel)
+        ax.axis('tight')
+
+    return fig201, axes201
+
+
+###############################################################################
+
+def plotBEspectrograms(eigenvectors, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
+    '''
+    Plots the provided spectrograms from SVD V vector
+
+    Parameters:
+    -------------
+    eigenvectors : 3D numpy complex matrices
+        Eigenvectors rearranged as - [row, col, component]
+
+
+    xaxis : 1D real numpy array
+        The vector to plot against
+    num_comps : int
+        Number of components to plot
+    title : String
+        Title to plot above everything else
+    xlabel : String
+        Label for x axis
+    stdevs : int
+        Number of standard deviations to consider for plotting
+
+    Returns:
+    ---------
+    fig, axes
+    '''
+    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
+    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
+    fig201.canvas.set_window_title(title)
+
+    for index in xrange(num_comps):
+        cur_map = np.transpose(eigenvectors[index, :, :])
+        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
+        funcs = [np.abs, np.angle]
+        labels = ['Amplitude', 'Phase']
+        for func, lab, ax in zip(funcs, labels, axes):
+            (amp_mean, amp_std) = getGoodLims(func(cur_map))
+            ax.imshow(func(cur_map), cmap='inferno',
+                      vmin=amp_mean - stdevs * amp_std,
+                      vmax=amp_mean + stdevs * amp_std)
+            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
+            ax.set_aspect('auto')
+        ax.set_xlabel(xlabel)
+
+    return fig201, axes201
+
+
+###############################################################################
+
+def plotBEeigenvectors(eigenvectors, num_comps=4, xlabel=''):
+    '''
+    Plots the provided spectrograms from SVD V vector
+
+    Parameters:
+    -------------
+    eigenvectors : 3D numpy complex matrices
+        Eigenvectors rearranged as - [row, col, component]
+
+
+    xaxis : 1D real numpy array
+        The vector to plot against
+    num_comps : int
+        Number of components to plot
+    title : String
+        Title to plot above everything else
+    xlabel : String
+        Label for x axis
+    stdevs : int
+        Number of standard deviations to consider for plotting
+
+    Returns:
+    ---------
+    fig, axes
+    '''
+    funcs = [np.abs, np.angle]
+    labels = ['Amplitude', 'Phase']
+
+    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
+    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
+    fig201.canvas.set_window_title("Eigenvectors")
+
+    for index in xrange(num_comps):
+        cur_map = eigenvectors[index, :]
+        #         axes = [axes201.flat[index], axes201.flat[index+num_comps], axes201.flat[index+2*num_comps], axes201.flat[index+3*num_comps]]
+        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
+        for func, lab, ax in zip(funcs, labels, axes):
+            ax.plot(func(cur_map))
+            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
+        ax.set_xlabel(xlabel)
+    fig201.tight_layout()
+
+    return fig201, axes201
+
+
+###############################################################################
+
+def plotBELoops(xaxis, xlabel, amp_mat, phase_mat, num_comps, title=None):
+    '''
+    Plots the provided loops from the SHO. Replace / merge with function in BESHOUtils
+
+    Parameters:
+    -------------
+    xaxis : 1D real numpy array
+        The vector to plot against
+    xlabel : string
+        Label for x axis
+    amp_mat : 2D real numpy array
+        Amplitude matrix arranged as [points, component]
+    phase_mat : 2D real numpy array
+        Phase matrix arranged as [points, component]
+    num_comps : int
+        Number of components to plot
+    title : String
+        Title to plot above everything else
+
+    Returns:
+    ---------
+    fig, axes
+    '''
+    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 6))
+    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
+    fig201.canvas.set_window_title(title)
+
+    for index in xrange(num_comps):
+        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
+        resp_vecs = [amp_mat[index, :], phase_mat[index, :]]
+        resp_titles = ['Amplitude', 'Phase']
+
+        for ax, resp, titl in zip(axes, resp_vecs, resp_titles):
+            ax.plot(xaxis, resp)
+            ax.set_title('%s %d' % (titl, index + 1))
+            ax.set_aspect('auto')
+            ax.set_xlabel(xlabel)
+
+    fig201.tight_layout()
+    return fig201, axes201
+
+
+###############################################################################
+
+def plotScree(S, title='Scree'):
+    '''
+    Plots the S or scree
+
+    Parameters:
+    -------------
+    S : 1D real numpy array
+        The S vector from SVD
+
+    Returns:
+    ---------
+    fig, axes
+    '''
+    fig203 = plt.figure(figsize=(6.5, 6))
+    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
+    axes203.loglog(np.arange(len(S)) + 1, S, 'b', marker='*')
+    axes203.set_xlabel('Principal Component')
+    axes203.set_ylabel('Variance')
+    axes203.set_title(title)
+    axes203.set_xlim(left=1, right=len(S))
+    axes203.set_ylim(bottom=np.min(S), top=np.max(S))
+    fig203.canvas.set_window_title("Scree")
+
+    return fig203, axes203
+
+
+###############################################################################
+
+def plotLoadingMaps(loadings, num_comps=4, stdevs=2, colormap='jet', show_colorbar=True):
+    '''
+    Plots the provided loading maps
+
+    Parameters:
+    -------------
+    loadings : 3D real numpy array
+        structured as [rows, cols, component]
+    num_comps : int
+        Number of components to plot
+    stdevs : int
+        Number of standard deviations to consider for plotting
+    colormap : string or object from matplotlib.colors (Optional. Default = jet or rainbow)
+        Colormap for the plots
+    show_colorbar : Boolean (Optional. Default = True)
+        Whether or not to show the color bar
+
+    Returns:
+    ---------
+    fig, axes
+    '''
+    fig_h, fig_w = (4, 4 + show_colorbar * 1.00)
+    p_rows = int(np.ceil(np.sqrt(num_comps)))
+    p_cols = int(np.floor(num_comps / p_rows))
+    fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
+    fig202.subplots_adjust(hspace=0.4, wspace=0.4)
+    fig202.canvas.set_window_title("Loading Maps")
+
+    for index in xrange(num_comps):
+        cur_map = loadings[:, :, index]
+        (amp_mean, amp_std) = getGoodLims(cur_map)
+        if show_colorbar:
+            pcol0 = axes202.flat[index].pcolor(cur_map, vmin=amp_mean - stdevs * amp_std,
+                                               vmax=amp_mean + stdevs * amp_std)
+            fig202.colorbar(pcol0, ax=axes202.flat[index])
+            axes202.flat[index].axis('tight')
+        else:
+            axes202.flat[index].imshow(cur_map, cmap=colormap,
+                                       interpolation='none',
+                                       vmin=amp_mean - stdevs * amp_std,
+                                       vmax=amp_mean + stdevs * amp_std)
+
+        axes202.flat[index].set_title('Loading %d' % (index + 1))
+        axes202.flat[index].set_aspect('auto')
+    fig202.tight_layout()
+
+    return fig202, axes202
+
+
+###############################################################################
+
+def plotKMeansResults(label_mat, cluster_centroids, spec_val=None, cmap=plt.cm.jet,
+                      spec_label='Spectroscopic Value', resp_label='Response'):
+    '''
+    label_mat : 2D int numpy array or h5py.Dataset object
+                Spatial map of cluster labels structured as [rows, cols]
+    cluster_centroids : 2D array or h5py.Dataset object
+                Centroids arranged as [cluster number, features]
+    spec_val : (Optional) 1D float numpy array or h5py.Dataset object
+                X axis to plot the centroids against
+                If no value is specified, the data is plotted against the index
+    cmap : plt.cm object (Optional. Default = plt.cm.jet)
+                Colormap to use for the labels map and the centroid.
+                Advised to pick a map where the centroid plots show clearly
+    spec_label : String (Optional. Default = 'Spectroscopic Value')
+                Label to use for X axis on cluster centroid plot
+    resp_label : String (Optional. Default = 'Response')
+                Label to use for Y axis on cluster centroid plot
+    '''
+
+    def __plotCentroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
+        num_clusters = centroids.shape[0]
+        for clust in xrange(num_clusters):
+            ax.plot(spec_val, centroids[clust],
+                    label='Cluster {}'.format(clust),
+                    color=cmap(int(255 * clust / (num_clusters - 1))))
+        ax.set_ylabel(y_label)
+        ax.legend(loc='best')
+        if title:
+            ax.set_title(title)
+            ax.set_xlabel(spec_label)
+
+    if type(spec_val) == type(None):
+        spec_val = np.arange(cluster_centroids.shape[1])
+
+    if cluster_centroids.dtype in [np.complex64, np.complex128, np.complex]:
+        fig = plt.figure(figsize=(12, 8))
+        ax_map = plt.subplot2grid((2, 10), (0, 0), colspan=6, rowspan=2)
+        ax_amp = plt.subplot2grid((2, 10), (0, 6), colspan=4)
+        ax_phase = plt.subplot2grid((2, 10), (1, 6), colspan=4)
+        axes = [ax_map, ax_amp, ax_phase]
+
+        __plotCentroids(np.abs(cluster_centroids), ax_amp, spec_val, spec_label,
+                        resp_label + ' - Amplitude', cmap, 'Centroids')
+        __plotCentroids(np.angle(cluster_centroids), ax_phase, spec_val, spec_label,
+                        resp_label + ' - Phase', cmap)
+    else:
+        fig, axes = plt.subplots(1, 2, figsize=(12, 6))
+        ax_map = axes[0]
+        __plotCentroids(cluster_centroids, axes[1], spec_val, spec_label,
+                        resp_label, cmap, 'Centroids')
+
+    num_clusters = cluster_centroids.shape[0]
+    if isinstance(label_mat, h5py.Dataset):
+        '''
+        Reshape label_mat based on linked positions
+        '''
+        pos = label_mat.file[label_mat.attrs['Position_Indices']]
+        nx = len(np.unique(pos[:, 0]))
+        ny = len(np.unique(pos[:, 1]))
+        label_mat = label_mat[()].reshape(nx, ny)
+    im = ax_map.imshow(label_mat, interpolation='none')
+    divider = make_axes_locatable(ax_map)
+    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
+    fig.colorbar(im, cax=cax)
+    # pcol0 = ax_map.pcolor(label_mat, cmap=cmap)
+    # fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
+    ax_map.axis('tight')
+    ax_map.set_title('Cluster Label Map')
+
+    fig.tight_layout()
+    fig.suptitle('k-Means result')
+    fig.canvas.set_window_title('k-Means result')
+
+    return fig, axes
+
+
+###############################################################################
+
+def plotKMeansClusters(label_mat, cluster_centroids,
+                       num_cluster=4):
+    '''
+    Plots the provided label mat and centroids
+    from KMeans clustering
+
+    Parameters:
+    -------------
+    label_mat : 2D int numpy array
+                structured as [rows, cols]
+    cluster_centroids: 2D real numpy array
+                       structured as [cluster,features]
+    num_cluster : int
+                Number of centroids to plot
+
+    Returns:
+    ---------
+    fig
+    '''
+
+    if num_cluster < 5:
+
+        fig501 = plt.figure(figsize=(20, 10))
+        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
+        fax2 = plt.subplot2grid((2, 4), (0, 2))
+        fax3 = plt.subplot2grid((2, 4), (0, 3))
+        fax4 = plt.subplot2grid((2, 4), (1, 2))
+        fax5 = plt.subplot2grid((2, 4), (1, 3))
+        fig501.tight_layout()
+        axes_handles = [fax1, fax2, fax3, fax4, fax5]
+
+    else:
+        fig501 = plt.figure(figsize=(20, 10))
+        # make subplot for cluster map
+        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
+        fax1.set_xmargin(0.50)
+        # make subplot for cluster centers
+        fax2 = plt.subplot2grid((3, 6), (0, 3))
+        fax3 = plt.subplot2grid((3, 6), (0, 4))
+        fax4 = plt.subplot2grid((3, 6), (0, 5))
+        fax5 = plt.subplot2grid((3, 6), (1, 3))
+        fax6 = plt.subplot2grid((3, 6), (1, 4))
+        fax7 = plt.subplot2grid((3, 6), (1, 5))
+        fax8 = plt.subplot2grid((3, 6), (2, 3))
+        fax9 = plt.subplot2grid((3, 6), (2, 4))
+        fax10 = plt.subplot2grid((3, 6), (2, 5))
+        fig501.tight_layout()
+        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]
+
+        # Plot results
+    for ax, index in zip(axes_handles[0:num_cluster + 1], np.arange(num_cluster + 1)):
+        if index == 0:
+            im = ax.imshow(label_mat, interpolation='none')
+            ax.set_title('K-means Cluster Map')
+            divider = make_axes_locatable(ax)
+            cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
+            plt.colorbar(im, cax=cax)
+        else:
+            #             ax.plot(Vdc_vec, cluster_centroids[index-1,:], 'g-')
+            ax.plot(cluster_centroids[index - 1, :], 'g-')
+            ax.set_xlabel('Voltage (V)')
+            ax.set_ylabel('Current (arb.)')
+            ax.set_title('K-means Centroid: %d' % (index))
+
+    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
+
+    return fig501
+
+
+###############################################################################
+
+def plotClusterDendrograms(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
+                           sort_type='distance', sort_mode=True):
+    '''
+    Creates and plots the dendrograms for the given label_mat and
+    eigenvalues
+
+    Parameters
+    -------------
+    label_mat : 2D real numpy array
+                structured as [rows, cols], from KMeans clustering
+    e_vals: 3D real numpy array of eigenvalues
+            structured as [component, rows, cols]
+    num_comps : int
+                Number of components used to make eigenvalues
+    num_cluster: int
+                 Number of cluster used to make the label_mat
+    mode: str, optional
+          How should the dendrograms be created.
+          "Full" -- use all clusters when creating the dendrograms
+          "Truncated" -- stop showing clusters after 'last'
+    last: int, optional - should be provided when using "Truncated"
+          How many merged clusters should be shown when using
+          "Truncated" mode
+    sort_type: str, optional
+          What type of sorting should be used when plotting the
+          dendrograms.  Options are:
+              count    Default
+                  Uses the count_sort from scipy.cluster.hierachy.dendrogram
+              distance
+                  Uses the distance_sort from scipy.cluster.hierachy.dendrogram
+    sort_mode: str or bool, optional
+          For the chosen sort_type, which mode should be used.
+          Options:
+              False    Default
+                  Does no sorting
+              'ascending' or True
+                  The child with the minimum of the chosen sort parameter is
+                  plotted first
+              'descending'
+                  The child with the maximum of the chosen sort parameter is
+                  plotted first
+
+    Returns
+    ---------
+    fig
+    '''
+    if mode == 'Truncated' and not last:
+        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
+        mode = 'Full'
+
+    if mode == 'Full':
+        print 'Creating full dendrogram from clusters'
+        mode = None
+    elif mode == 'Truncated':
+        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
+        mode = 'lastp'
+        show_contracted = True
+    else:
+        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))
+
+    c_sort = False
+    d_sort = False
+    if sort_type == 'count':
+        c_sort = sort_mode
+        if c_sort == 'descending':
+            c_sort = 'descendent'
+    elif sort_type == 'distance':
+        d_sort = sort_mode
+
+    centroid_mat = np.zeros([num_cluster, num_comp])
+    for k1 in xrange(num_cluster):
+        [i_x, i_y] = np.where(label_mat == k1)
+        u_stack = np.zeros([len(i_x), num_comp])
+        for k2 in xrange(len(i_x)):
+            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])
+
+        centroid_mat[k1, :] = np.mean(u_stack, 0)
+
+
+        # Get the distrance between cluster means
+    distance_mat = pdist(centroid_mat)
+
+    # get hierachical pairings of clusters
+    linkage_pairing = linkage(distance_mat, 'weighted')
+    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])
+
+    fig = plt.figure()
+    dendrogram(linkage_pairing, p=last, truncate_mode=mode, count_sort=c_sort, distance_sort=d_sort, leaf_rotation=90)
+
+    fig.axes[0].set_title('Dendrogram')
+    fig.axes[0].set_xlabel('Index or (cluster size)')
+    fig.axes[0].set_ylabel('Distance')
+
+    return fig
+
+
+def plot1DSpectrum(data_vec, freq, title, figure_path=None):
+    """
+    Plots the Step averaged BE response
+
+    Parameters
+    ------------
+    data_vec : 1D numpy array
+        Response of one BE pulse
+    freq : 1D numpy array
+        BE frequency that serves as the X axis of the plot
+    title : String
+        Plot group name
+    figure_path : String / Unicode
+        Absolute path of the file to write the figure to
+
+    Returns
+    ---------
+    fig : Matplotlib.pyplot figure
+        Figure handle
+    ax : Matplotlib.pyplot axis
+        Axis handle
+    """
+    if len(data_vec) != len(freq):
+        #         print '1D:',data_vec.shape, freq.shape
+        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
+        return
+    freq = freq * 1E-3  # to kHz
+    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
+    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
+    ax[0].set_title('Amplitude (mV)')
+    # ax[0].set_xlabel('Frequency (kHz)')
+    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
+    ax[1].set_title('Phase (deg)')
+    ax[1].set_xlabel('Frequency (kHz)')
+    fig.suptitle(title + ': mean UDVS, mean spatial response')
+    if figure_path:
+        plt.savefig(figure_path, format='png', dpi=300)
+    return (fig, ax)
+
+
+###############################################################################
+
+def plot2DSpectrogram(mean_spectrogram, freq, title, figure_path=None):
+    """
+    Plots the position averaged spectrogram
+
+    Parameters
+    ------------
+    mean_spectrogram : 2D numpy complex array
+        Means spectrogram arranged as [frequency, UDVS step]
+    freq : 1D numpy float array
+        BE frequency that serves as the X axis of the plot
+    title : String
+        Plot group name
+    figure_path : String / Unicode
+        Absolute path of the file to write the figure to
+
+    Returns
+    ---------
+    fig : Matplotlib.pyplot figure
+        Figure handle
+    ax : Matplotlib.pyplot axis
+        Axis handle
+    """
+    if mean_spectrogram.shape[1] != len(freq):
+        #  print '2D:',mean_spectrogram.shape, freq.shape
+        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
+        return
+    freq = freq * 1E-3  # to kHz
+    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
+    # print mean_spectrogram.shape
+    # print freq.shape
+    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
+                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
+    ax[0].set_title('Amplitude')
+    # ax[0].set_xticks(freq)
+    # ax[0].set_ylabel('UDVS Step')
+    ax[0].axis('tight')
+    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
+                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
+    ax[1].set_title('Phase')
+    ax[1].set_xlabel('Frequency (kHz)')
+    # ax[0].set_ylabel('UDVS Step')
+    ax[1].axis('tight')
+    fig.suptitle(title)
+    if figure_path:
+        plt.savefig(figure_path, format='png', dpi=300)
+    return (fig, ax)
+
+
+###############################################################################
+
+def plotHistgrams(p_hist, p_hbins, title, figure_path=None):
+    """
+    Plots the position averaged spectrogram
+
+    Parameters
+    ------------
+    p_hist : 2D numpy array
+        histogram data arranged as [physical quantity, frequency bin]
+    p_hbins : 1D numpy array
+        BE frequency that serves as the X axis of the plot
+    title : String
+        Plot group name
+    figure_path : String / Unicode
+        Absolute path of the file to write the figure to
+
+    Returns
+    ---------
+    fig : Matplotlib.pyplot figure
+        Figure handle
+    """
+
+    base_fig_size = 7
+    h_fig = base_fig_size
+    w_fig = base_fig_size * 4
+
+    fig = plt.figure(figsize=(w_fig, h_fig))
+    fig.suptitle(title)
+    iplot = 0
+
+    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1
+
+    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))
+
+    iplot += 1
+    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
+    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
+    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
+    p_plot.axis('tight')
+    fig.colorbar(p_im, fraction=0.1)
+
+    iplot += 1
+    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
+    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
+    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
+    p_plot.axis('tight')
+    fig.colorbar(p_im, fraction=0.1)
+
+    iplot += 1
+    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
+    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
+    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
+    p_plot.axis('tight')
+    fig.colorbar(p_im, fraction=0.1)
+
+    iplot += 1
+    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
+    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
+    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
+    p_plot.axis('tight')
+    fig.colorbar(p_im, fraction=0.1)
+
+    if figure_path:
+        plt.savefig(figure_path, format='png')
+
+    return fig
\ No newline at end of file
-- 
GitLab