plot_utils.py 52 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
13
import sys
Chris Smith's avatar
merged    
Chris Smith committed
14
import h5py
15
import matplotlib.pyplot as plt
16
17
import numpy as np
import scipy
18
from scipy.signal import blackman
19
from matplotlib.colors import LinearSegmentedColormap
20
from mpl_toolkits.axes_grid1 import ImageGrid
21

22
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
23

24
25
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
26

Somnath, Suhas's avatar
Somnath, Suhas committed
27
default_cmap = plt.cm.viridis
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


def get_cmap_object(cmap):
    """
    Get the matplotlib.colors.LinearSegmentedColormap object regardless of the input

    Parameters
    ----------
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
    Returns
    -------
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Requested / Default colormap object
    """
    if cmap is None:
        return default_cmap
    elif isinstance(cmap, str):
Unknown's avatar
Unknown committed
46
        return plt.get_cmap(cmap)
47
48
49
    return cmap


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
82

83
84
85
86
87
88
89
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
90
        color map object that can be used in place of the default colormap
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
112

Chris Smith's avatar
Chris Smith committed
113

Somnath, Suhas's avatar
Somnath, Suhas committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
Unknown's avatar
Unknown committed
144
                             for (dist, colors) in interp_vals][::-1])}
Somnath, Suhas's avatar
Somnath, Suhas committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
175
176


Somnath, Suhas's avatar
Somnath, Suhas committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
196
197


198
def discrete_cmap(num_bins, base_cmap=default_cmap):
199
200
201
202
203
204
205
206
207
208
209
210
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
211
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
212
213
        Discretized color map

Chris Smith's avatar
Chris Smith committed
214
215
216
217
218
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

219
    """
220
    if base_cmap is None:
221
        base_cmap = default_cmap.name
222

223
    elif isinstance(base_cmap, type(default_cmap)):
224
        base_cmap = base_cmap.name
225

226
227
228
229
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
230

231

Chris Smith's avatar
Chris Smith committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
258

259
260

def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=default_cmap, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
261
262
263
264
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

265
266
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
267
268
269
270
271
272
273
274
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
275
276
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
277
    """
278
279
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
280
    pts_per_step = int(len(ai_vec) / num_steps)
281
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
282
283
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
284
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
285
286
287
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
288
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
289
    """
290
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
291
292
293
    fig.colorbar(CS3)"""


294
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
295
                     cmap=default_cmap, y_offset=0, **kwargs):
296
297
298
299
300
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
301
    axis : axis handle
302
303
304
305
306
307
308
309
310
311
312
313
314
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
315
316
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
317
    """
318
319
    cmap = get_cmap_object(cmap)

320
321
322
323
324
325
326
327
328
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

329
    for line_ind in range(num_lines):
Unknown's avatar
Unknown committed
330
        axis.plot(x_axis, line_family[line_ind] + line_ind * y_offset,
331
332
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
333
334


Chris Smith's avatar
Chris Smith committed
335
def plot_map(axis, data, stdevs=2, origin='lower', **kwargs):
336
337
338
339
340
341
342
343
344
345
346
347
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
Chris Smith's avatar
Chris Smith committed
348
349
350
351
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
352

353
354
355
356
357
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
358
359
360
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
361
                     origin=origin,
362
                     **kwargs)
363
364
    axis.set_aspect('auto')

365
    return im
366

367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def single_img_cbar_plot(fig, axis, img, show_xy_ticks=True, show_cbar=True,
                         x_size=1, y_size=1, num_ticks=4, cbar_label=None,
                         tick_font_size=14, **kwargs):
    """
    Plots an image within the given axis with a color bar + label and appropriate X, Y tick labels.
    This is particularly useful to get readily interpretable plots for papers

    Parameters
    ----------
    fig : matplotlib.figure object
        Handle to figure
    axis : matplotlib.axis object
        Axis to plot this image onto
    img : 2D numpy array with real values
        Data for the image plot
    show_xy_ticks : bool, Optional, default = True
        Whether or not to show X, Y ticks
    show_cbar : bool, optional, default = True
        Whether or not to show the colorbar
    x_size : float, optional, default = 1
        Extent of tick marks in the X axis. This could be something like 1.5 for 1.5 microns
    y_size : float, optional, default = 1
        Extent of tick marks in y axis
    num_ticks : unsigned int, optional, default = 4
        Number of tick marks on the X and Y axes
    cbar_label : str, optional, default = None
        Labels for the colorbar. Use this for something like quantity (units)
    tick_font_size : unsigned int, optional, default = 14
        Font size to apply to x, y, colorbar ticks and colorbar label
    kwargs : dictionary
        Anything else that will be passed on to plot_map or imshow

    Returns
    -------
    im_handle : handle to image plot
        handle to image plot
    cbar : handle to color bar
        handle to color bar
    """
    if 'clim' not in kwargs:
        im_handle = plot_map(axis, img, aspect='auto', **kwargs)
    else:
        im_handle = axis.imshow(img, origin='lower', **kwargs)

    if show_xy_ticks:
        x_ticks = np.linspace(0, img.shape[1] - 1, num_ticks, dtype=int)
        y_ticks = np.linspace(0, img.shape[0] - 1, num_ticks, dtype=int)
        axis.set_xticks(x_ticks)
        axis.set_yticks(y_ticks)
        axis.set_xticklabels([str(np.round(ind * x_size / (img.shape[1] - 1), 2)) for ind in x_ticks])
        axis.set_yticklabels([str(np.round(ind * y_size / (img.shape[0] - 1), 2)) for ind in y_ticks])
        set_tick_font_size(axis, tick_font_size)
    else:
        axis.set_xticks([])
        axis.set_yticks([])

    if show_cbar:
        cbar = fig.colorbar(im_handle, ax=axis)
        if cbar_label is not None:
            cbar.set_label(cbar_label, fontsize=tick_font_size)
        """
        z_lims = cbar.get_clim()
        cbar.set_ticks(np.linspace(z_lims[0],z_lims[1], num_ticks))
        """
        cbar.ax.tick_params(labelsize=tick_font_size)
    return im_handle, cbar


Unknown's avatar
Unknown committed
436
437
438
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True,
               plots_on_side=5, x_label='', y_label='', subtitles='Position', title='',
               central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
439
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
440
    """
441
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
442
443
444
445
446

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
447
448
449
450
451
452
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
453
454
455
456
457
458
459
460
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
461
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
476
    if type(datasets) in [h5py.Dataset, np.ndarray]:
477
478
479
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
480
        datasets = [datasets]
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return

    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
517
518

    plots_on_side = min(abs(plots_on_side), 5)
519

Somnath, Suhas's avatar
Somnath, Suhas committed
520
521
522
523
524
525
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

526
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
527
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
528

529
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
530
531
532
533
534
535
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
536
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
537
538

    for count, posn in enumerate(chosen_pos):
539
540
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
541
        else:
542
            for dataset, col_val in zip(datasets, line_colors):
Unknown's avatar
Unknown committed
543
544
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind],
                                     color=col_val)
545
        if h5_pos is not None:
546
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
547
548
549
550
551
552
553
554
555
556
557
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
558
559
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
560
561
562
563
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
564

Unknown's avatar
Unknown committed
565

Somnath, Suhas's avatar
Somnath, Suhas committed
566
567
###############################################################################

568

569
570
def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2,
                           cmap=default_cmap):
Somnath, Suhas's avatar
Somnath, Suhas committed
571
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
572
573
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
574
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
575
    -------------
576
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
577
578
579
580
581
582
583
584
585
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting
586
587
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
Somnath, Suhas's avatar
Somnath, Suhas committed
588

Chris Smith's avatar
Chris Smith committed
589
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
590
591
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
592
    """
593
594
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
595
596
597
598
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

599
    for index in range(num_comps):
600
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
601
602
603
604
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
605
606
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
607
            ax.imshow(func(cur_map), cmap=cmap,
Somnath, Suhas's avatar
Somnath, Suhas committed
608
609
610
611
612
613
614
615
616
617
618
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

619
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
620
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
621
622
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
623
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
624
    -------------
625
626
627
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
628
        The vector to plot against
Unknown's avatar
Unknown committed
629
630
631
632
    heading : str
        Title to plot above everything else
    subtitle : str
        Subtile to of Figure
Somnath, Suhas's avatar
Somnath, Suhas committed
633
634
    num_comps : int
        Number of components to plot
Unknown's avatar
Unknown committed
635
    x_label : str
Somnath, Suhas's avatar
Somnath, Suhas committed
636
637
        Label for x axis

Chris Smith's avatar
Chris Smith committed
638
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
639
640
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
641
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
642
643
644
645
646
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
647
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
648

649
    for index in range(num_comps):
650
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
651
652
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
653
654
655
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
656
657
658
659
    fig201.tight_layout()

    return fig201, axes201

Unknown's avatar
Unknown committed
660

Somnath, Suhas's avatar
Somnath, Suhas committed
661
662
663
###############################################################################


664
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
665
    """
666
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
667

Chris Smith's avatar
Chris Smith committed
668
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
669
    -------------
670
671
    scree : 1D real numpy array
        The scree vector from SVD
Unknown's avatar
Unknown committed
672
673
    title : str
        Figure title.  Default Scree
Somnath, Suhas's avatar
Somnath, Suhas committed
674

Chris Smith's avatar
Chris Smith committed
675
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
676
677
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
678
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
679
680
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
681
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
682
683
684
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
685
686
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
687
688
689
690
691
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


692
693
694
# ###############################################################################


695
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Chris Smith's avatar
Chris Smith committed
696
                   title='Component', heading='Map Stack', fig_mult=(4, 4), pad_mult=(0.1, 0.07), **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
697
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
698
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
699

Chris Smith's avatar
Chris Smith committed
700
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
701
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
702
    map_stack : 3D real numpy array
703
        structured as [component, rows, cols]
704
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
705
706
707
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
708
    color_bar_mode : String, Optional
709
        Options are None, single or each. Default None
Unknown's avatar
Unknown committed
710
711
712
713
    evenly_spaced : bool
        Default False
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
714
715
716
717
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
718
719
720
721
722
    heading : String
        ###Insert description here### Default 'Map Stack'
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
723
724
725
726
727
728
729
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
730

Chris Smith's avatar
Chris Smith committed
731
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
732
733
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
734
    """
735
736
737
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

738
    num_comps = abs(num_comps)
739
    num_comps = min(num_comps, map_stack.shape[0])
740
741

    if evenly_spaced:
742
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
743
744
745
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

746
747
748
749
750
751
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
752
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
753
754
755
    else:
        if not isinstance(title, str):
            title = 'Component'
756
        title = [title + ' ' + str(x) for x in chosen_pos]
757

758
    fig_h, fig_w = fig_mult
759
760
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
761
    if p_rows * p_cols < num_comps:
762
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
763
764
765
766
767
768
769

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
770
771
772
773

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
Unknown's avatar
Unknown committed
774
        inspec_func = inspect.signature
775
776

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
793
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
794
795
796
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

797
798
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
799
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
800
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
801
802
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
803

804
805
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
806
                      map_stack[index],
807
808
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
809
        if color_bar_mode is 'each':
810
            axes202.cbar_axes[count].colorbar(im)
811
812
813

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
814
815
816

    return fig202, axes202

817

818
def plot_cluster_h5_group(h5_group, centroids_together=True, cmap=default_cmap):
819
    """
Chris Smith's avatar
Chris Smith committed
820
    Plots the cluster labels and mean response for each cluster
821

Chris Smith's avatar
Chris Smith committed
822
823
824
825
826
827
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot
828
829
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
Chris Smith's avatar
Chris Smith committed
830
831
832
833
834
835
836
837

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
838

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

Unknown's avatar
Unknown committed
859
    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0, None, pos_dims[0]), 1]]
860
861
862
863
864
865
866
867
868
869
870
871
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
872
873

    y_spec_label = get_data_descriptor(h5_mean_resp)
874
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
875

876
877
878
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
879
                                             pos_labels=pos_labels, pos_ticks=pos_ticks, cmap=cmap)
880
881
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
882
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label, cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
883

Unknown's avatar
Unknown committed
884

Somnath, Suhas's avatar
Somnath, Suhas committed
885
###############################################################################
886
887


888
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=default_cmap,
889
890
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
891
    """
892
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
893
894
895
896
897

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
898
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
899
900
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
901
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
902
903
904
905
906
907
908
909
910
911
912
913
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
914
915
916
917
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
918
919
920
921
922
923
924

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
925
    """
926
    cmap = get_cmap_object(cmap)
927
928
929

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
930

931
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
932
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
933
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
934
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
935
936
937
938
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

Unknown's avatar
Unknown committed
939
    if spec_val is None:
Chris Smith's avatar
Chris Smith committed
940
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
941

Chris Smith's avatar
Chris Smith committed
942
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
943
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
944
945
946
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
947
948
        axes = [ax_map, ax_amp, ax_phase]

949
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
950
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
951
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
952
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
953
954
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
955
    else:
Chris Smith's avatar
Chris Smith committed
956
957
958
959
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
960
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
961
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
962
963
964
965
966
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
967
968

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
969
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
970
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
971
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
972
973
974
975
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
976

Chris Smith's avatar
Chris Smith committed
977
    # im = ax_map.imshow(label_mat, interpolation='none')
978
979
980
981
982
983
984
985
986
987
988
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

989
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
990
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
991
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
992
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
993
    ax_map.axis('tight')"""
994
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
995
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
996
    ax_map.axis('tight')
997
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
998
999
1000
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
1001
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
1002
1003
1004

    return fig, axes

Unknown's avatar
Unknown committed
1005

Somnath, Suhas's avatar
Somnath, Suhas committed
1006
1007
###############################################################################

1008

1009
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4, cmap=default_cmap,
1010
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
1011
    """
1012
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1013

1014
1015
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
1016
1017
1018
1019
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
1020
1021
    max_centroids : unsigned int
                    Number of centroids to plot
1022
1023
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroids
1024
1025
1026
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
1027
1028
1029
1030
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
1031

1032
1033
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
1034
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
1035
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1036

1037
    cmap = get_cmap_object(cmap)
1038

1039
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

1068
    # First plot the labels map:
1069
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0], base_cmap=cmap))
1070
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
1071
1072
    fax1.axis('tight')
    fax1.set_aspect('auto')
1073
    fax1.set_title('Cluster Label Map')
1074
    """im = fax1.imshow(label_mat, interpolation='none')
1075
1076
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1077
1078
1079
1080
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
1081
1082

    # Plot results
1083
1084
1085
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
1086
                    color=cmap(int(255 * index / (cluster_centroids.shape[0] - 1))))
1087
1088
1089
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
1090
            plot_map(ax, cluster_centroids[index])
1091
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
1092
1093

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
1094
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
1095
1096
1097
1098
1099
1100

    return fig501


###############################################################################

1101
1102
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
1103
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1104
1105
1106
1107
1108
1109
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
1110
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1111
    e_vals: 3D real numpy array of eigenvalues
1112
        structured as [component, rows, cols]
1113
    num_comp : int
1114
1115
1116
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
1117
    mode: str, optional
1118
1119
1120
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
1121
    last: int, optional - should be provided when using "Truncated"
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
1136
1137
1138

    Returns
    ---------
1139
1140
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
1141
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1142
1143
1144
1145
1146
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':