plot_utils.py 57.7 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
Unknown's avatar
Unknown committed
13
import os
14
import sys
Chris Smith's avatar
merged    
Chris Smith committed
15
import h5py
16
import matplotlib as mpl
17
import matplotlib.pyplot as plt
18
19
import numpy as np
import scipy
20
from scipy.signal import blackman
Unknown's avatar
Unknown committed
21
import ipywidgets as widgets
22
from matplotlib.colors import LinearSegmentedColormap
23
from mpl_toolkits.axes_grid1 import ImageGrid
24
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
25

26
27
28
29
30
31
32
33
34
35
36
# mpl.rcParams.keys()  # gets all allowable keys
mpl.rc('figure', figsize=(5,5))
mpl.rc('lines', linewidth=2)
mpl.rc('axes', labelsize=16, titlesize=16)
mpl.rc('figure', titlesize=20)
mpl.rc('font', size=14) # global font size
mpl.rc('legend', fontsize=16, fancybox=True)
mpl.rc('xtick.major', size=6)
mpl.rc('xtick.minor', size=4)
# mpl.rcParams['xtick.major.size'] = 6

37
38
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
39

Somnath, Suhas's avatar
Somnath, Suhas committed
40
default_cmap = plt.cm.viridis
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


def get_cmap_object(cmap):
    """
    Get the matplotlib.colors.LinearSegmentedColormap object regardless of the input

    Parameters
    ----------
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
    Returns
    -------
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Requested / Default colormap object
    """
    if cmap is None:
        return default_cmap
    elif isinstance(cmap, str):
Unknown's avatar
Unknown committed
59
        return plt.get_cmap(cmap)
60
61
62
    return cmap


63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
95

96
97
98
99
100
101
102
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
103
        color map object that can be used in place of the default colormap
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
125

Chris Smith's avatar
Chris Smith committed
126

Somnath, Suhas's avatar
Somnath, Suhas committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
Unknown's avatar
Unknown committed
157
                             for (dist, colors) in interp_vals][::-1])}
Somnath, Suhas's avatar
Somnath, Suhas committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
188
189


Somnath, Suhas's avatar
Somnath, Suhas committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
209
210


211
def discrete_cmap(num_bins, base_cmap=default_cmap):
212
213
214
215
216
217
218
219
220
221
222
223
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
224
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
225
226
        Discretized color map

Chris Smith's avatar
Chris Smith committed
227
228
229
230
231
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

232
    """
233
    if base_cmap is None:
234
        base_cmap = default_cmap.name
235

236
    elif isinstance(base_cmap, type(default_cmap)):
237
        base_cmap = base_cmap.name
238

239
240
241
242
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
243

244

Chris Smith's avatar
Chris Smith committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
271

272
273

def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=default_cmap, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
274
275
276
277
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

278
279
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
280
281
282
283
284
285
286
287
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
288
289
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
290
    """
291
292
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
293
    pts_per_step = int(len(ai_vec) / num_steps)
294
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
295
296
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
297
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
298
299
300
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
301
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
302
    """
303
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
304
305
306
    fig.colorbar(CS3)"""


307
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
308
                     cmap=default_cmap, y_offset=0, **kwargs):
309
310
311
312
313
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
314
    axis : axis handle
315
316
317
318
319
320
321
322
323
324
325
326
327
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
328
329
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
330
    """
331
332
    cmap = get_cmap_object(cmap)

333
334
335
336
337
338
339
340
341
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

342
    for line_ind in range(num_lines):
Unknown's avatar
Unknown committed
343
        axis.plot(x_axis, line_family[line_ind] + line_ind * y_offset,
344
345
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
346
347


Unknown's avatar
Unknown committed
348
def plot_map(axis, data, stdevs=None, origin='lower', **kwargs):
349
350
351
352
353
354
355
356
357
358
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
Unknown's avatar
Unknown committed
359
360
    stdevs : unsigned int (Optional. Default = None)
        Number of standard deviations to consider for plotting.  If None, full range is plotted.
Chris Smith's avatar
Chris Smith committed
361
362
363
364
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
365

366
367
368
    Returns
    -------
    """
Unknown's avatar
Unknown committed
369
370
371
372
373
374
375
376
377
    if stdevs is not None:
        data_mean = np.mean(data)
        data_std = np.std(data)
        plt_min = data_mean - stdevs * data_std
        plt_max = data_mean + stdevs * data_std
    else:
        plt_min = np.min(data)
        plt_max = np.max(data)

378
    im = axis.imshow(data, interpolation='none',
Unknown's avatar
Unknown committed
379
380
                     vmin=plt_min,
                     vmax=plt_max,
381
                     origin=origin,
382
                     **kwargs)
383

384
    return im
385

386

Unknown's avatar
Unknown committed
387
388
def single_img_cbar_plot(axis, img, show_xy_ticks=None, show_cbar=True, x_size=1, y_size=1, num_ticks=4,
                         cbar_label=None, tick_font_size=14, **kwargs):
389
390
391
392
393
394
395
396
397
398
    """
    Plots an image within the given axis with a color bar + label and appropriate X, Y tick labels.
    This is particularly useful to get readily interpretable plots for papers

    Parameters
    ----------
    axis : matplotlib.axis object
        Axis to plot this image onto
    img : 2D numpy array with real values
        Data for the image plot
Unknown's avatar
Unknown committed
399
    show_xy_ticks : bool, Optional, default = None, shown unedited
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        Whether or not to show X, Y ticks
    show_cbar : bool, optional, default = True
        Whether or not to show the colorbar
    x_size : float, optional, default = 1
        Extent of tick marks in the X axis. This could be something like 1.5 for 1.5 microns
    y_size : float, optional, default = 1
        Extent of tick marks in y axis
    num_ticks : unsigned int, optional, default = 4
        Number of tick marks on the X and Y axes
    cbar_label : str, optional, default = None
        Labels for the colorbar. Use this for something like quantity (units)
    tick_font_size : unsigned int, optional, default = 14
        Font size to apply to x, y, colorbar ticks and colorbar label
    kwargs : dictionary
        Anything else that will be passed on to plot_map or imshow

    Returns
    -------
    im_handle : handle to image plot
        handle to image plot
    cbar : handle to color bar
        handle to color bar
    """
    if 'clim' not in kwargs:
Unknown's avatar
Unknown committed
424
        im_handle = plot_map(axis, img, **kwargs)
425
426
427
    else:
        im_handle = axis.imshow(img, origin='lower', **kwargs)

Unknown's avatar
Unknown committed
428
    if show_xy_ticks is True:
429
430
431
432
433
434
435
        x_ticks = np.linspace(0, img.shape[1] - 1, num_ticks, dtype=int)
        y_ticks = np.linspace(0, img.shape[0] - 1, num_ticks, dtype=int)
        axis.set_xticks(x_ticks)
        axis.set_yticks(y_ticks)
        axis.set_xticklabels([str(np.round(ind * x_size / (img.shape[1] - 1), 2)) for ind in x_ticks])
        axis.set_yticklabels([str(np.round(ind * y_size / (img.shape[0] - 1), 2)) for ind in y_ticks])
        set_tick_font_size(axis, tick_font_size)
Unknown's avatar
Unknown committed
436
    elif show_xy_ticks is False:
437
438
        axis.set_xticks([])
        axis.set_yticks([])
Unknown's avatar
Unknown committed
439
440
    else:
        set_tick_font_size(axis, tick_font_size)
441
442

    if show_cbar:
Unknown's avatar
Unknown committed
443
444
445
446
447
448
        # cbar = fig.colorbar(im_handle, ax=axis)
        # divider = make_axes_locatable(axis)
        # cax = divider.append_axes('right', size='5%', pad=0.05)
        # cbar = plt.colorbar(im_handle, cax=cax)
        cbar = plt.colorbar(im_handle, ax=axis, orientation='vertical',
                            fraction=0.046, pad=0.04, use_gridspec=True)
449
450
451
452
453
454
455
456
457
458
        if cbar_label is not None:
            cbar.set_label(cbar_label, fontsize=tick_font_size)
        """
        z_lims = cbar.get_clim()
        cbar.set_ticks(np.linspace(z_lims[0],z_lims[1], num_ticks))
        """
        cbar.ax.tick_params(labelsize=tick_font_size)
    return im_handle, cbar


Unknown's avatar
Unknown committed
459
460
461
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True,
               plots_on_side=5, x_label='', y_label='', subtitles='Position', title='',
               central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
462
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
463
    """
464
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
465
466
467
468
469

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
470
471
472
473
474
475
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
476
477
478
479
480
481
482
483
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
484
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
499
    if type(datasets) in [h5py.Dataset, np.ndarray]:
500
501
502
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
503
        datasets = [datasets]
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return

    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
540
541

    plots_on_side = min(abs(plots_on_side), 5)
542

Somnath, Suhas's avatar
Somnath, Suhas committed
543
544
545
546
547
548
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

549
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
550
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
551

552
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
553
554
555
556
557
558
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
559
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
560
561

    for count, posn in enumerate(chosen_pos):
562
563
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
564
        else:
565
            for dataset, col_val in zip(datasets, line_colors):
Unknown's avatar
Unknown committed
566
567
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind],
                                     color=col_val)
568
        if h5_pos is not None:
569
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
570
571
572
573
574
575
576
577
578
579
580
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
581
582
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
583
    if title:
584
        fig.suptitle(title, fontsize=14, y=1.05)
Somnath, Suhas's avatar
Somnath, Suhas committed
585
586
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
587

Unknown's avatar
Unknown committed
588

Somnath, Suhas's avatar
Somnath, Suhas committed
589
590
###############################################################################

591

592
593
def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2,
                           cmap=default_cmap):
Somnath, Suhas's avatar
Somnath, Suhas committed
594
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
595
596
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
597
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
598
    -------------
599
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
600
601
602
603
604
605
606
607
608
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting
609
610
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
Somnath, Suhas's avatar
Somnath, Suhas committed
611

Chris Smith's avatar
Chris Smith committed
612
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
613
614
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
615
    """
616
617
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
618
619
620
621
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

622
    for index in range(num_comps):
623
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
624
625
626
627
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
628
629
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
630
            ax.imshow(func(cur_map), cmap=cmap,
Somnath, Suhas's avatar
Somnath, Suhas committed
631
632
633
634
635
636
637
638
639
640
641
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

642
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
643
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
644
645
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
646
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
647
    -------------
648
649
650
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
651
        The vector to plot against
Unknown's avatar
Unknown committed
652
653
654
655
    heading : str
        Title to plot above everything else
    subtitle : str
        Subtile to of Figure
Somnath, Suhas's avatar
Somnath, Suhas committed
656
657
    num_comps : int
        Number of components to plot
Unknown's avatar
Unknown committed
658
    x_label : str
Somnath, Suhas's avatar
Somnath, Suhas committed
659
660
        Label for x axis

Chris Smith's avatar
Chris Smith committed
661
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
662
663
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
664
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
665
666
667
668
669
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
670
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
671

672
    for index in range(num_comps):
673
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
674
675
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
676
677
678
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
679
680
681
682
    fig201.tight_layout()

    return fig201, axes201

Unknown's avatar
Unknown committed
683

Somnath, Suhas's avatar
Somnath, Suhas committed
684
685
686
###############################################################################


687
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
688
    """
689
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
690

Chris Smith's avatar
Chris Smith committed
691
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
692
    -------------
693
694
    scree : 1D real numpy array
        The scree vector from SVD
Unknown's avatar
Unknown committed
695
696
    title : str
        Figure title.  Default Scree
Somnath, Suhas's avatar
Somnath, Suhas committed
697

Chris Smith's avatar
Chris Smith committed
698
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
699
700
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
701
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
702
703
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
704
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
705
706
707
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
708
709
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
710
711
712
713
714
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


715
716
717
# ###############################################################################


718
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Unknown's avatar
Unknown committed
719
720
                   title='Component', heading='Map Stack', colorbar_label='', fig_mult=(5, 5), pad_mult=(0.1, 0.07),
                   **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
721
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
722
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
723

Chris Smith's avatar
Chris Smith committed
724
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
725
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
726
    map_stack : 3D real numpy array
727
        structured as [component, rows, cols]
728
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
729
730
731
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
732
    color_bar_mode : String, Optional
733
        Options are None, single or each. Default None
Unknown's avatar
Unknown committed
734
735
736
737
    evenly_spaced : bool
        Default False
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
738
739
740
741
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
742
743
    heading : String
        ###Insert description here### Default 'Map Stack'
744
745
    colorbar_label : String
        label for colorbar. Default is an empty string.
746
747
748
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
749
750
751
752
753
754
755
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
756

Chris Smith's avatar
Chris Smith committed
757
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
758
759
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
760
    """
761
762
763
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

764
    num_comps = abs(num_comps)
765
    num_comps = min(num_comps, map_stack.shape[0])
766
767

    if evenly_spaced:
768
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
769
770
771
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

772
773
774
775
776
777
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
778
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
779
780
781
    else:
        if not isinstance(title, str):
            title = 'Component'
782
        title = [title + ' ' + str(x) for x in chosen_pos]
783

784
    fig_h, fig_w = fig_mult
785
786
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
787
    if p_rows * p_cols < num_comps:
788
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
789
790
791
792
793
794
795

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
796
797
798
799

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
Unknown's avatar
Unknown committed
800
        inspec_func = inspect.signature
801
802

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
819
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
820
821
822
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

823
824
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
825
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
826
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
827
    fig202.canvas.set_window_title(heading)
828
    fig202.suptitle(heading, fontsize=16+(p_rows+ p_cols), y=0.9)
Somnath, Suhas's avatar
Somnath, Suhas committed
829

830
831
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
832
                      map_stack[index],
833
834
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
835
        if color_bar_mode is 'each':
836
837
            cb = axes202.cbar_axes[count].colorbar(im)
            cb.set_label_text(colorbar_label)
838
    if color_bar_mode is 'single':
839
840
        cb = axes202.cbar_axes[0].colorbar(im)
        cb.set_label_text(colorbar_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
841
842
    return fig202, axes202

843

844
def plot_cluster_h5_group(h5_group, centroids_together=True, cmap=default_cmap):
845
    """
Chris Smith's avatar
Chris Smith committed
846
    Plots the cluster labels and mean response for each cluster
847

Chris Smith's avatar
Chris Smith committed
848
849
850
851
852
853
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot
854
855
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
Chris Smith's avatar
Chris Smith committed
856
857
858
859
860
861
862
863

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
864

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

Unknown's avatar
Unknown committed
885
    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0, None, pos_dims[0]), 1]]
886
887
888
889
890
891
892
893
894
895
896
897
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
898
899

    y_spec_label = get_data_descriptor(h5_mean_resp)
900
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
901

902
903
904
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
905
                                             pos_labels=pos_labels, pos_ticks=pos_ticks, cmap=cmap)
906
907
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
908
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label, cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
909

Unknown's avatar
Unknown committed
910

Somnath, Suhas's avatar
Somnath, Suhas committed
911
###############################################################################
912
913


914
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=default_cmap,
915
916
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
917
    """
918
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
919
920
921
922
923

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
924
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
925
926
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
927
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
928
929
930
931
932
933
934
935
936
937
938
939
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
940
941
942
943
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
944
945
946
947
948
949
950

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
951
    """
952
    cmap = get_cmap_object(cmap)
953
954
955

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
956

957
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
958
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
959
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
960
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
961
962
963
964
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

Unknown's avatar
Unknown committed
965
    if spec_val is None:
Chris Smith's avatar
Chris Smith committed
966
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
967

Chris Smith's avatar
Chris Smith committed
968
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
969
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
970
971
972
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
973
974
        axes = [ax_map, ax_amp, ax_phase]

975
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
976
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
977
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
978
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
979
980
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
981
    else:
Chris Smith's avatar
Chris Smith committed
982
983
984
985
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
986
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
987
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
988
989
990
991
992
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
993
994

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
995
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
996
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
997
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
998
999
1000
1001
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
1002

Chris Smith's avatar
Chris Smith committed
1003
    # im = ax_map.imshow(label_mat, interpolation='none')
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

1015
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
1016
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1017
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
1018
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
1019
    ax_map.axis('tight')"""
1020
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
1021
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
1022
    ax_map.axis('tight')
1023
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
1024
1025
1026
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
1027
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
1028
1029
1030

    return fig, axes

Unknown's avatar
Unknown committed
1031

Somnath, Suhas's avatar
Somnath, Suhas committed
1032
1033
###############################################################################

1034

1035
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4, cmap=default_cmap,
1036
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
1037
    """
1038
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1039

1040
1041
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
1042
1043
1044
1045
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
1046
1047
    max_centroids : unsigned int
                    Number of centroids to plot
1048
1049
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroids
1050
1051
1052
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
1053
1054
1055
1056
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
1057

1058
1059
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
1060
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
1061
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1062

1063
    cmap = get_cmap_object(cmap)
1064

1065
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

1094
    # First plot the labels map:
1095
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0], base_cmap=cmap))
1096
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
1097
1098
    fax1.axis('tight')
    fax1.set_aspect('auto')
1099
    fax1.set_title('Cluster Label Map')
1100
    """im = fax1.imshow(label_mat, interpolation='none')
1101
1102
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1103
1104
1105
1106
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
1107
1108

    # Plot results
1109
1110
1111
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
1112
                    color=cmap(int(255 * index / (cluster_centroids.shape[0] - 1))))
1113
1114
1115
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
1116