plot_utils.py 48.4 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
13
import sys
Chris Smith's avatar
merged    
Chris Smith committed
14
import h5py
15
import matplotlib.pyplot as plt
16
17
import numpy as np
import scipy
18
from scipy.signal import blackman
19
from matplotlib.colors import LinearSegmentedColormap
20
from mpl_toolkits.axes_grid1 import ImageGrid
21

22
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
23

24
25
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
59

60
61
62
63
64
65
66
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
67
        color map object that can be used in place of plt.cm.viridis
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
89

Chris Smith's avatar
Chris Smith committed
90

Somnath, Suhas's avatar
Somnath, Suhas committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
                            for (dist, colors) in interp_vals][::-1])}

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
152
153


Somnath, Suhas's avatar
Somnath, Suhas committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
173
174


175
def discrete_cmap(num_bins, base_cmap=None):
176
177
178
179
180
181
182
183
184
185
186
187
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
188
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
189
190
        Discretized color map

Chris Smith's avatar
Chris Smith committed
191
192
193
194
195
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

196
    """
197
198
199
200
201
    if base_cmap is None:
        base_cmap = 'viridis'

    if type(base_cmap) == type(plt.cm.viridis):
        base_cmap = base_cmap.name
202

203
204
205
206
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
207

208

Chris Smith's avatar
Chris Smith committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
235

236
def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.viridis, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
237
238
239
240
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

241
242
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
243
244
245
246
247
248
249
250
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
251
252
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
253
254
    """
    pts_per_step = int(len(ai_vec) / num_steps)
255
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
256
257
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
258
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
259
260
261
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
262
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
263
    """
264
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
265
266
267
    fig.colorbar(CS3)"""


268
269
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
                     cmap=plt.cm.viridis, y_offset=0, **kwargs):
270
271
272
273
274
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
275
    axis : axis handle
276
277
278
279
280
281
282
283
284
285
286
287
288
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
289
290
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
291
292
293
294
295
296
297
298
299
300
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

301
    for line_ind in range(num_lines):
302
        axis.plot(x_axis, line_family[line_ind] + line_ind*  y_offset,
303
304
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
305
306


Chris Smith's avatar
Chris Smith committed
307
def plot_map(axis, data, stdevs=2, origin='lower', **kwargs):
308
309
310
311
312
313
314
315
316
317
318
319
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
Chris Smith's avatar
Chris Smith committed
320
321
322
323
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
324

325
326
327
328
329
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
330
331
332
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
333
                     origin=origin,
334
                     **kwargs)
335
336
    axis.set_aspect('auto')

337
    return im
338

339

340
341
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True, plots_on_side=5, x_label='',
               y_label='', subtitles='Position', title='', central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
342
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
343
    """
344
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
345
346
347
348
349

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
350
351
352
353
354
355
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
356
357
358
359
360
361
362
363
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
364
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
379
    if type(datasets) in [h5py.Dataset, np.ndarray]:
380
381
382
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
383
        datasets = [datasets]
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return


    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
421
422

    plots_on_side = min(abs(plots_on_side), 5)
423

Somnath, Suhas's avatar
Somnath, Suhas committed
424
425
426
427
428
429
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

430
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
431
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
432

433
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
434
435
436
437
438
439
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
440
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
441
442

    for count, posn in enumerate(chosen_pos):
443
444
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
445
        else:
446
447
448
            for dataset, col_val in zip(datasets, line_colors):
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind], color=col_val)
        if h5_pos is not None:
449
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
450
451
452
453
454
455
456
457
458
459
460
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
461
462
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
463
464
465
466
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
467

Somnath, Suhas's avatar
Somnath, Suhas committed
468
469
###############################################################################

470
471

def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
472
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
473
474
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
475
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
476
    -------------
477
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
478
479
480
481
482
483
484
485
486
487
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

Chris Smith's avatar
Chris Smith committed
488
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
489
490
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
491
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
492
493
494
495
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

496
    for index in range(num_comps):
497
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
498
499
500
501
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
502
503
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
504
505
506
507
508
509
510
511
512
513
514
515
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

516
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
517
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
518
519
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
520
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
521
    -------------
522
523
524
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
525
526
527
528
529
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
530
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
531
532
533
534
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

Chris Smith's avatar
Chris Smith committed
535
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
536
537
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
538
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
539
540
541
542
543
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
544
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
545

546
    for index in range(num_comps):
547
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
548
549
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
550
551
552
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
553
554
555
556
557
558
559
    fig201.tight_layout()

    return fig201, axes201

###############################################################################


560
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
561
    """
562
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
563

Chris Smith's avatar
Chris Smith committed
564
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
565
    -------------
566
567
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
568

Chris Smith's avatar
Chris Smith committed
569
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
570
571
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
572
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
573
574
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
575
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
576
577
578
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
579
580
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
581
582
583
584
585
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


586
587
588
# ###############################################################################


589
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Chris Smith's avatar
Chris Smith committed
590
                   title='Component', heading='Map Stack', fig_mult=(4, 4), pad_mult=(0.1, 0.07), **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
591
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
592
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
593

Chris Smith's avatar
Chris Smith committed
594
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
595
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
596
    map_stack : 3D real numpy array
597
        structured as [component, rows, cols]
598
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
599
600
601
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
602
    color_bar_mode : String, Optional
603
604
605
606
607
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
608
609
610
611
612
    heading : String
        ###Insert description here### Default 'Map Stack'
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
613
614
615
616
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
617
618
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
Chris Smith's avatar
Chris Smith committed
619
620
621
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
622

Chris Smith's avatar
Chris Smith committed
623
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
624
625
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
626
    """
627
628
629
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

630
    num_comps = abs(num_comps)
631
    num_comps = min(num_comps, map_stack.shape[0])
632
633

    if evenly_spaced:
634
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
635
636
637
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

638
639
640
641
642
643
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
644
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
645
646
647
    else:
        if not isinstance(title, str):
            title = 'Component'
648
        title = [title + ' ' + str(x) for x in chosen_pos]
649

650
    fig_h, fig_w = fig_mult
651
652
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
653
    if p_rows * p_cols < num_comps:
654
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
655
656
657
658
659
660
661

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
662
663
664
665
666
667
668

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
        inspec_func = inspect.getargspec

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
685
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
686
687
688
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

689
690
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
691
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
692
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
693
694
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
695

696
697
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
698
                      map_stack[index],
699
700
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
701
        if color_bar_mode is 'each':
702
            axes202.cbar_axes[count].colorbar(im)
703
704
705

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
706
707
708

    return fig202, axes202

709

710
def plot_cluster_h5_group(h5_group, centroids_together=True):
711
    """
Chris Smith's avatar
Chris Smith committed
712
    Plots the cluster labels and mean response for each cluster
713

Chris Smith's avatar
Chris Smith committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
728

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
762
763

    y_spec_label = get_data_descriptor(h5_mean_resp)
764
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
765

766
767
768
769
770
771
772
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
                                             pos_labels=pos_labels, pos_ticks=pos_ticks)
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
773
774

###############################################################################
775
776


777
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=None,
778
779
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
780
    """
781
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
782
783
784
785
786

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
787
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
788
789
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
790
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
791
792
793
794
795
796
797
798
799
800
801
802
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
803
804
805
806
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
807
808
809
810
811
812
813

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
814
    """
815
816
817
818
819
    if cmap is None:
        cmap = plt.cm.viridis

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
820

821
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
822
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
823
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
824
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
825
826
827
828
829
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
830
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
831

Chris Smith's avatar
Chris Smith committed
832
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
833
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
834
835
836
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
837
838
        axes = [ax_map, ax_amp, ax_phase]

839
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
840
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
841
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
842
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
843
844
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
845
    else:
Chris Smith's avatar
Chris Smith committed
846
847
848
849
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
850
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
851
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
852
853
854
855
856
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
857
858

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
859
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
860
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
861
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
862
863
864
865
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
866

Chris Smith's avatar
Chris Smith committed
867
    # im = ax_map.imshow(label_mat, interpolation='none')
868
869
870
871
872
873
874
875
876
877
878
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

879
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
880
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
881
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
882
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
883
    ax_map.axis('tight')"""
884
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
885
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
886
    ax_map.axis('tight')
887
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
888
889
890
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
891
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
892
893
894
895
896

    return fig, axes

###############################################################################

897

898
899
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4,
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
900
    """
901
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
902

903
904
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
905
906
907
908
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
909
910
    max_centroids : unsigned int
                    Number of centroids to plot
911
912
913
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
914
915
916
917
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
918

919
920
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
921
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
922
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
923

924
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

953
    # First plot the labels map:
954
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
955
                                                      base_cmap=plt.cm.viridis))
956
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
957
958
    fax1.axis('tight')
    fax1.set_aspect('auto')
959
    fax1.set_title('Cluster Label Map')
960
    """im = fax1.imshow(label_mat, interpolation='none')
961
962
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
963
964
965
966
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
967
968

    # Plot results
969
970
971
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
972
                    color=plt.cm.viridis(int(255 * index / (cluster_centroids.shape[0] - 1))))
973
974
975
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
976
            plot_map(ax, cluster_centroids[index])
977
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
978
979

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
980
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
981
982
983
984
985
986

    return fig501


###############################################################################

987
988
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
989
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
990
991
992
993
994
995
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
996
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
997
    e_vals: 3D real numpy array of eigenvalues
998
        structured as [component, rows, cols]
999
    num_comp : int
1000
1001
1002
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
1003
    mode: str, optional
1004
1005
1006
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
1007
    last: int, optional - should be provided when using "Truncated"
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
1022
1023
1024

    Returns
    ---------
1025
1026
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
1027
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1028
1029
1030
1031
1032
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
1033
        print('Creating full dendrogram from clusters')
Somnath, Suhas's avatar
Somnath, Suhas committed
1034
1035
        mode = None
    elif mode == 'Truncated':
1036
        print('Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last))
Somnath, Suhas's avatar
Somnath, Suhas committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
1051
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
1052
1053
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
1054
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
1055
1056
1057
1058
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

1059
    # Get the distrance between cluster means
1060
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
1061
1062

    # get hierachical pairings of clusters
1063
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
1064
1065
1066
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
1067
1068
1069
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
1070
1071
1072
1073
1074
1075
1076
1077

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


1078
def plot_1d_spectrum(data_vec, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
1101
1102
        warn('plot_1d_spectrum: Incompatible data sizes!!!!')
        print('1D:', data_vec.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
1103
        return
1104
1105
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
1106
1107
1108
1109
1110
1111
1112
1113
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1114
    return
Somnath, Suhas's avatar
Somnath, Suhas committed
1115
1116
1117
1118


###############################################################################

1119
def plot_2d_spectrogram(mean_spectrogram, freq, title, cmap=None, figure_path=None, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
1131
    cmap : matplotlib.colors.LinearSegmentedColormap object
1132
        color map. Default = plt.cm.viridis
Somnath, Suhas's avatar
Somnath, Suhas committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
1144
1145
        warn('plot_2d_spectrogram: Incompatible data sizes!!!!')
        print('2D:', mean_spectrogram.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
1146
        return
1147
1148
1149
1150

    """cmap = kwargs.get('cmap')
    kwargs.pop('cmap')"""
    if cmap is None:  # unpack from kwargs instead
1151
        col_map = plt.cm.viridis  # overriding default
1152

1153
1154
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
1155
1156
    # print(mean_spectrogram.shape)
    # print(freq.shape)
1157
1158
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest', cmap=col_map,
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0], **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
1159
1160
1161
1162
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
1163
1164
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest', cmap=col_map,
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0], **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
1165
1166
1167
1168
1169
1170
1171
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')