be_odf.py 47.1 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
from warnings import warn
12
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
13
14
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
15

16
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
17
    createSpecVals, requires_conjugate, nf32
18
from ...core.io.translator import Translator, generate_dummy_main_parms
19
20
from ...core.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from ...core.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
21
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs
22

23

Somnath, Suhas's avatar
Somnath, Suhas committed
24
25
26
27
28
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
29

Chris Smith's avatar
Chris Smith committed
30
31
32
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
33
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Unknown's avatar
Unknown committed
34
35
36
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
37

38
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
53
54
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
55
56
57
58
59
60
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
61
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
62
        (folder_path, basename) = path.split(file_path)
63
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
64

Somnath, Suhas's avatar
Somnath, Suhas committed
65
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
66
67
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
68

Somnath, Suhas's avatar
Somnath, Suhas committed
69
        if 'parm_txt' in path_dict.keys():
Unknown's avatar
Unknown committed
70
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
71
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
72
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
73
74
            if parm_dict['VS_steps_per_full_cycle']==0: isBEPS=False
            else: isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
75
        else:
76
            raise IOError('No parameters file found! Cannot translate this dataset!')
Unknown's avatar
Unknown committed
77

Somnath, Suhas's avatar
Somnath, Suhas committed
78
79
80
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
81

Somnath, Suhas's avatar
Somnath, Suhas committed
82
83
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
84

Somnath, Suhas's avatar
Somnath, Suhas committed
85
            if not std_expt:
86
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
87
88
89

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
90
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
91
92
93
94
95
96
97
98
99
100
101
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
102

Somnath, Suhas's avatar
Somnath, Suhas committed
103
104
105
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
106

Somnath, Suhas's avatar
Somnath, Suhas committed
107
108
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
109
110
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
111
112
113
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
114

Somnath, Suhas's avatar
Somnath, Suhas committed
115
116
117
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

Unknown's avatar
Unknown committed
118
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
119
120
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
121
122
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
123
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
124
125
126
        check_bins = real_size / ((num_pix - 1) * 4)

        if tot_bins % 1 and check_bins % 1:
127
            raise ValueError('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
128
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
129
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
130
131
132
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
Unknown's avatar
Unknown committed
133
134
135
136
137
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.')
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
138
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
139
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
140
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
141
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
142
        else:
Unknown's avatar
Unknown committed
143
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
144
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
145
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
146
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
147

148
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
149
150
151
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
154
155
156
157
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
158

Somnath, Suhas's avatar
Somnath, Suhas committed
159
        self.FFT_BE_wave = bin_FFT
160

Somnath, Suhas's avatar
Somnath, Suhas committed
161
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
162
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
163
164

            #             Remove the unused plot group columns before proceeding:
Somnath, Suhas's avatar
Somnath, Suhas committed
165
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
166

167
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
168
169
170
171
172

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
173
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
174
175
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
176
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
177

Somnath, Suhas's avatar
Somnath, Suhas committed
178
179
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
180
181
182

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
183
184
185
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
186
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
187
                # UDVS step
188
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
189
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
190
            del stind, step_index
Unknown's avatar
Unknown committed
191

Somnath, Suhas's avatar
Somnath, Suhas committed
192
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
193
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
194
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
197
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
198
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
201

202
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE), np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
203

Somnath, Suhas's avatar
Somnath, Suhas committed
204
205
206
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
207
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
208

Somnath, Suhas's avatar
Somnath, Suhas committed
209
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
210
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
211
212
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
213
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
214
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
215
216
217

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
218
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
219
220
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
221
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
222
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
223

Somnath, Suhas's avatar
Somnath, Suhas committed
224
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
225
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
226
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
227
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
228
229
230
231
232
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
233
234
235
236
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
237

Somnath, Suhas's avatar
Somnath, Suhas committed
238
        spec_vals_slices = dict()
Unknown's avatar
Unknown committed
239
240
241
        #         if len(spec_vals_labs) == 1:
        #             spec_vals_slices[spec_vals_labs[0]]=(slice(0,1,None),)
        #         else:
Somnath, Suhas's avatar
Somnath, Suhas committed
242
243

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
244
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
245

246
247
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
248

249
250
        # First create the file
        h5_f = h5py.File(h5_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
251

252
        # Then write root level attributes
253
        global_parms = generate_dummy_main_parms()
Somnath, Suhas's avatar
Somnath, Suhas committed
254
255
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
256
257
258
259
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
260

Somnath, Suhas's avatar
Somnath, Suhas committed
261
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
262
263
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
264
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
265
        global_parms['translator'] = 'ODF'
266
        write_simple_attrs(h5_f, global_parms)
267
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
268

269
270
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
271

272
273
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
274

275
276
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
277

278
279
        # Write channel group attributes
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1'})
Unknown's avatar
Unknown committed
280

281
282
        # Now the datasets!
        h5_ex_wfm = h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
        h5_UDVS_inds = h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
        h5_bin_steps = h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE), 
                                                  dtype=INDICES_DTYPE)

        h5_bin_inds = h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_bin_freq = h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_bin_FFT = h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_wfm_typ = h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
308
            write_simple_attrs(dset, spec_dim_dict)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
        h5_noise_floor = h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                                    chunks=(1, num_actual_udvs_steps))

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
328

Chris Smith's avatar
Chris Smith committed
329
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
330

331
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
332
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
333
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
334
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
335

336
        h5_f.close()
Unknown's avatar
Unknown committed
337

Somnath, Suhas's avatar
Somnath, Suhas committed
338
        return h5_path
Chris Smith's avatar
Chris Smith committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
367
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
368
369
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
370
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
371
372
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
373
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
374
375
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
376
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
377
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
378

Somnath, Suhas's avatar
Somnath, Suhas committed
379
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
398

Somnath, Suhas's avatar
Somnath, Suhas committed
399
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
400
401
402
403

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
404
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
405
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
406
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
407
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
408
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
409
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
410
411
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
412
            if 0.5 * udvs_steps % 1:
413
414
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
415
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
416
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
417
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
418
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
419
420
421
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
422
            if step_size % 1:
423
424
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
425
            step_size = int(step_size)
426

427
428
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
429
        take_conjugate = requires_conjugate(rand_spectra)
430

Somnath, Suhas's avatar
Somnath, Suhas committed
431
432
433
434
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
435
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
436
437
438
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
439
440
441
442
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
443
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
444
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
445
446
447
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
448
449
450
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
451
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
452

Somnath, Suhas's avatar
Somnath, Suhas committed
453
454
455
456
457
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
458

Somnath, Suhas's avatar
Somnath, Suhas committed
459
460
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
461
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
462
463
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
464
465
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
466
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
467
468
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
469
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
470
471
472

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
473
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
474
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
475

Somnath, Suhas's avatar
Somnath, Suhas committed
476
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
477
478
479
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
480
        print('---- Finished reading files -----')
481
482

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
483
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
484
485
486
487
488
489
490
491
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
492
493
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
494
        """
Unknown's avatar
Unknown committed
495
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
496

Unknown's avatar
Unknown committed
497
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
498
499

        step_size = self.h5_raw.shape[1] / udvs_steps
500
501
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
502
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
503
        raw_vec = parser.read_all_data()
504
        if take_conjugate:
505
            print('Taking conjugate to ensure positive Quality factors')
506
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
507

Somnath, Suhas's avatar
Somnath, Suhas committed
508
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Unknown's avatar
Unknown committed
509

Somnath, Suhas's avatar
Somnath, Suhas committed
510
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
511
512
513
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
514
        self.h5_raw[:, :] = np.complex64(raw_mat)
515
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
516

Unknown's avatar
Unknown committed
517
518
        print('---- Finished reading files -----')

519
    def _parse_file_path(self, data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
520
521
522
523
524
525
526
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
527
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
528
529
530
531
532
533
534
535
536
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
537
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
538
539
540
541
542
543
544
545
546
547
548

        if basename.endswith('_d'):
            # Old old data format where the folder ended with a _d for some reason
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
549

Somnath, Suhas's avatar
Somnath, Suhas committed
550
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
551
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
552
553
554
555
556
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
557
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
558
559
560
561
562
563
564
565
566
567
568
569
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
570
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
571
572
573

    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
597
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
598
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
599
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
600
601
602
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
603
604
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
605

Somnath, Suhas's avatar
Somnath, Suhas committed
606
607
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
624
625
626

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
627
628
629
630
631
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
632

Somnath, Suhas's avatar
Somnath, Suhas committed
633
634
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
635
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
636
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
637

Somnath, Suhas's avatar
Somnath, Suhas committed
638
639
640
641
642
643
644
645
646
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
647
648
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
649
650
651
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
652
653
654
655
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
656

Somnath, Suhas's avatar
Somnath, Suhas committed
657
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
658

Somnath, Suhas's avatar
Somnath, Suhas committed
659
660
661
662
663
664
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
665

Somnath, Suhas's avatar
Somnath, Suhas committed
666
667
668
669
670
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
671

Somnath, Suhas's avatar
Somnath, Suhas committed
672
673
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
674

Somnath, Suhas's avatar
Somnath, Suhas committed
675
676
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
677
678
679
680

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
681
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
682

Somnath, Suhas's avatar
Somnath, Suhas committed
683
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
684
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
685
686
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
687
        parm_dict['VS_cycle_phase_shift'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
688
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
689
690
691
692
693
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Unknown's avatar
Unknown committed
694

Somnath, Suhas's avatar
Somnath, Suhas committed
695
696
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Unknown's avatar
Unknown committed
697
698
699
            parm_dict['VS_amplitude_[V]'] = 0.5 * (
                max(dc_amp_vec_full) - min(dc_amp_vec_full))  # SS_max_offset_amplitude
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)
Somnath, Suhas's avatar
Somnath, Suhas committed
700
701
702
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
703
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
704
            parm_dict['VS_offset_[V]'] = 0
Unknown's avatar
Unknown committed
705
            parm_dict['VS_number_of_cycles'] = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
706
707
708
709
710
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
711
712
713
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
714
715
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
716
717
        else:
            parm_dict['VS_mode'] = 'Custom'
Unknown's avatar
Unknown committed
718

Somnath, Suhas's avatar
Somnath, Suhas committed
719
        return parm_dict
Unknown's avatar
Unknown committed
720

Somnath, Suhas's avatar
Somnath, Suhas committed
721
722
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
723
724
725
726
727
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
728
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
729
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
730
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
731
732
733
734
735
736
737
738
739
740
741
742
743
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
744
        if not path.exists(file_path):
745
            raise IOError('NO "More parms" file found')
Somnath, Suhas's avatar
Somnath, Suhas committed
746
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
747
748
749
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
750
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
Unknown's avatar
Unknown committed
751
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1  # From Matlab (base 1) to Python (base 0)
Somnath, Suhas's avatar
Somnath, Suhas committed
752
753
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
754
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Unknown's avatar
Unknown committed
755
        # BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
756
757
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
Unknown's avatar
Unknown committed
758
759
        BE_bin_FFT.imag = -1 * np.imag(FFT_full[BE_bin_ind])

Somnath, Suhas's avatar
Somnath, Suhas committed
760
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
761
762

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Unknown's avatar
Unknown committed
763

Somnath, Suhas's avatar
Somnath, Suhas committed
764
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
Unknown's avatar
Unknown committed
782

Somnath, Suhas's avatar
Somnath, Suhas committed
783
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
784
785
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
786
787
788
789
790
791
792
793
794

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
795
            """
Unknown's avatar
Unknown committed
796

Somnath, Suhas's avatar
Somnath, Suhas committed
797
            if len(strvals) is not len(numvals):
Unknown's avatar
Unknown committed
798
                return None
Somnath, Suhas's avatar
Somnath, Suhas committed
799
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
800
801
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
802
            return None  # not found in list
Unknown's avatar
Unknown committed
803
804

        # % Extract values from parm text file
Unknown's avatar
Unknown committed
805
        BE_signal_type = translate_val(parm_dict['BE_phase_content'],
Unknown's avatar
Unknown committed
806
807
808
                                       ['chirp-sinc hybrid', '1/2 harmonic excitation',
                                        '1/3 harmonic excitation', 'pure sine'],
                                       [1, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
809
810
811
812
813
814
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
Unknown's avatar
Unknown committed
815

Somnath, Suhas's avatar
Somnath, Suhas committed
816
817
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
Unknown's avatar
Unknown committed
818
        # VS_read_voltage = parm_dict['VS_read_voltage_[V]']
Somnath, Suhas's avatar
Somnath, Suhas committed
819
820
        VS_steps = parm_dict['VS_steps_per_full_cycle']
        VS_cycles = parm_dict['VS_number_of_cycles']
Somnath, Suhas's avatar
Somnath, Suhas committed
821
822
823
        VS_fraction = translate_val(parm_dict['VS_cycle_fraction'],
                                    ['full', '1/2', '1/4', '3/4'],
                                    [1., 0.5, 0.25, 0.75])
Somnath, Suhas's avatar
Somnath, Suhas committed
824
825
        VS_shift = parm_dict['VS_cycle_phase_shift']
        if VS_shift is not 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
826
827
828
829
830
831
832
            VS_shift = translate_val(VS_shift, ['1/4', '1/2', '3/4'], [0.25, 0.5, 0.75])
        VS_in_out_cond = translate_val(parm_dict['VS_measure_in_field_loops'],
                                       ['out-of-field', 'in-field', 'in and out-of-field'], [0, 1, 2])
        VS_ACDC_cond = translate_val(parm_dict['VS_mode'],
                                     ['DC modulation mode', 'AC modulation mode with time reversal',
                                      'load user defined VS Wave from file', 'current mode'],
                                     [0, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
833
834
835
836
        self.expt_type = VS_ACDC_cond
        FORC_cycles = parm_dict['FORC_num_of_FORC_cycles']
        FORC_A1 = parm_dict['FORC_V_high1_[V]']
        FORC_A2 = parm_dict['FORC_V_high2_[V]']
Unknown's avatar
Unknown committed
837
        # FORC_repeats = parm_dict['# of FORC repeats']
Somnath, Suhas's avatar
Somnath, Suhas committed
838
839
        FORC_B1 = parm_dict['FORC_V_low1_[V]']
        FORC_B2 = parm_dict['FORC_V_low2_[V]']
Unknown's avatar
Unknown committed
840
841
842

        # % build vector of voltage spectroscopy values

Somnath, Suhas's avatar
Somnath, Suhas committed
843
        if VS_ACDC_cond == 0 or VS_ACDC_cond == 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
844
            VS_amp_vec_1 = np.arange(0, 1 + 1 / (VS_steps / 4), 1 / (VS_steps / 4))
Somnath, Suhas's avatar
Somnath, Suhas committed
845
846
            VS_amp_vec_2 = np.flipud(VS_amp_vec_1[:-1])
            VS_amp_vec_3 = -VS_amp_vec_1[1:]
Unknown's avatar
Unknown committed
847
848
            VS_amp_vec_4 = VS_amp_vec_1[1:-1] - 1
            vs_amp_vec = VS_amp * (np.hstack((VS_amp_vec_1, VS_amp_vec_2, VS_amp_vec_3, VS_amp_vec_4)))
Unknown's avatar
Unknown committed
849
            # apply phase shift to VS wave
Unknown's avatar
Unknown committed
850
            vs_amp_vec = np.roll(vs_amp_vec, int(np.floor(VS_steps / VS_fraction * VS_shift)))
Unknown's avatar
Unknown committed
851
            # cut VS waveform
Unknown's avatar
Unknown committed
852
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps * VS_fraction))]
Unknown's avatar
Unknown committed
853
            # repeat VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
854
            vs_amp_vec = np.tile(vs_amp_vec, int(VS_cycles))
Unknown's avatar
Unknown committed
855
856
            vs_amp_vec = vs_amp_vec + VS_offset

Somnath, Suhas's avatar
Somnath, Suhas committed
857
        elif VS_ACDC_cond == 2:  # AC voltage spectroscopy with time reversal
Unknown's avatar
Unknown committed
858
859
            vs_amp_vec = VS_amp * np.arange(1 / (VS_steps / 2 / VS_fraction), 1 + 1 / (VS_steps / 2 / VS_fraction),
                                            1 / (VS_steps / 2 / VS_fraction))
Somnath, Suhas's avatar
Somnath, Suhas committed
860
            vs_amp_vec = np.roll(vs_amp_vec,
Unknown's avatar
Unknown committed
861
862
                                 int(np.floor(VS_steps / VS_fraction * VS_shift)))  # apply phase shift to VS wave
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps * VS_fraction / 2))]  # cut VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
863
            vs_amp_vec = np.tile(vs_amp_vec, VS_cycles * 2)  # repeat VS waveform
Unknown's avatar
Unknown committed
864

Somnath, Suhas's avatar
Somnath, Suhas committed
865
        if FORC_cycles > 1:
Unknown's avatar
Unknown committed
866
867
868
869
870
871
872
            vs_amp_vec = vs_amp_vec / np.max(np.abs(vs_amp_vec))
            FORC_cycle_vec = np.arange(0, FORC_cycles + 1, FORC_cycles / (FORC_cycles - 1))
            FORC_A_vec = FORC_cycle_vec * (FORC_A2 - FORC_A1) / FORC_cycles + FORC_A1
            FORC_B_vec = FORC_cycle_vec * (FORC_B2 - FORC_B1) / FORC_cycles + FORC_B1
            FORC_amp_vec = (FORC_A_vec - FORC_B_vec) / 2
            FORC_off_vec = (FORC_A_vec + FORC_B_vec) / 2

873
            VS_amp_mat = np.tile(vs_amp_vec, [int(FORC_cycles), 1])
Somnath, Suhas's avatar
Somnath, Suhas committed
874
875
            FORC_amp_mat = np.tile(FORC_amp_vec, [len(vs_amp_vec), 1]).transpose()
            FORC_off_mat = np.tile(FORC_off_vec, [len(vs_amp_vec), 1]).transpose()
Unknown's avatar
Unknown committed
876
877
878
            VS_amp_mat = VS_amp_mat * FORC_amp_mat + FORC_off_mat
            vs_amp_vec = VS_amp_mat.reshape(int(FORC_cycles * VS_cycles * VS_fraction * VS_steps))

Somnath, Suhas's avatar
Somnath, Suhas committed
879
880
        # Build UDVS table:
        if VS_ACDC_cond is 0 or VS_ACDC_cond is 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
881

Somnath, Suhas's avatar
Somnath, Suhas committed
882
            if VS_ACDC_cond is 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
883
                UD_dc_vec = np.vstack((vs_amp_vec, np.zeros(len(vs_amp_vec))))
Somnath, Suhas's avatar
Somnath, Suhas committed
884
            if VS_ACDC_cond is 4:
Somnath, Suhas's avatar
Somnath, Suhas committed
885
                UD_dc_vec = np.vstack((vs_amp_vec, vs_amp_vec))
Unknown's avatar
Unknown committed
886

Somnath, Suhas's avatar
Somnath, Suhas committed
887
            UD_dc_vec = UD_dc_vec.transpose().reshape(UD_dc_vec.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
888
            num_VS_steps = UD_dc_vec.size
Unknown's avatar
Unknown committed
889

Somnath, Suhas's avatar
Somnath, Suhas committed
890
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'in-field', 'out-of-field']
Somnath, Suhas's avatar
Somnath, Suhas committed
891
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'V', 'V']
Somnath, Suhas's avatar
Somnath, Suhas committed
892
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Unknown's avatar
Unknown committed
893

Somnath, Suhas's avatar
Somnath, Suhas committed
894
895
            udvs_table[:, 0] = np.arange(0, num_VS_steps)  # Python base 0
            udvs_table[:, 1] = UD_dc_vec
Unknown's avatar
Unknown committed
896
897
898
899

            BE_IF_switch = np.abs(np.imag(np.exp(1j * np.pi / 2 * np.arange(1, num_VS_steps + 1))))
            BE_OF_switch = np.abs(np.real(np.exp(1j * np.pi / 2 * np.arange(1, num_VS_steps + 1))))

Somnath, Suhas's avatar
Somnath, Suhas committed
900
901
902
903
904
905
            if VS_in_out_cond is 0:  # out of field only
                udvs_table[:, 2] = BE_amp * BE_OF_switch
            elif VS_in_out_cond is 1:  # in field only
                udvs_table[:, 2] = BE_amp * BE_IF_switch
            elif VS_in_out_cond is 2:  # both in and out of field
                udvs_table[:, 2] = BE_amp * np.ones(num_VS_steps)
Unknown's avatar
Unknown committed
906

Somnath, Suhas's avatar
Somnath, Suhas committed
907
908
            udvs_table[:, 3] = np.ones(num_VS_steps)  # wave type
            udvs_table[:, 4] = np.ones(num_VS_steps) * BE_signal_type  # wave mod
Unknown's avatar
Unknown committed
909
910
911
912

            udvs_table[:, 5] = float('NaN') * np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN') * np.ones(num_VS_steps)

Somnath, Suhas's avatar
Somnath, Suhas committed
913
914
            udvs_table[BE_IF_switch == 1, 5] = udvs_table[BE_IF_switch == 1, 1]
            udvs_table[BE_OF_switch == 1, 6] = udvs_table[BE_IF_switch == 1, 1]
Unknown's avatar
Unknown committed
915

Somnath, Suhas's avatar
Somnath, Suhas committed
916
        elif VS_ACDC_cond is 2:  # AC voltage spectroscopy
Unknown's avatar
Unknown committed
917

Somnath, Suhas's avatar
Somnath, Suhas committed
918
            num_VS_steps = vs_amp_vec.size
Unknown's avatar
Unknown committed
919
920
            half = int(0.5 * num_VS_steps)

Somnath, Suhas's avatar
Somnath, Suhas committed
921
            if num_VS_steps is not half * 2:
922
                raise ValueError('Odd number of UDVS steps found. Exiting!')
Unknown's avatar
Unknown committed
923
924

            UD_dc_vec = VS_offset * np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
925
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'forward', 'reverse']
Somnath, Suhas's avatar
Somnath, Suhas committed
926
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'A', 'A']
Somnath, Suhas's avatar
Somnath, Suhas committed
927
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Unknown's avatar
Unknown committed
928
            udvs_table[:, 0] = np.arange(1, num_VS_steps + 1)
Somnath, Suhas's avatar
Somnath, Suhas committed
929
930
931
            udvs_table[:, 1] = UD_dc_vec
            udvs_table[:, 2] = vs_amp_vec
            udvs_table[:, 3] = np.ones(num_VS_steps)
Unknown's avatar
Unknown committed
932
933
934
935
            udvs_table[:half, 4] = BE_signal_type * np.ones(half)
            udvs_table[half:, 4] = -1 * BE_signal_type * np.ones(half)
            udvs_table[:, 5] = float('NaN') * np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN') * np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
936
937
            udvs_table[:half, 5] = vs_amp_vec[:half]
            udvs_table[half:, 6] = vs_amp_vec[half:]
Unknown's avatar
Unknown committed
938

Somnath, Suhas's avatar
Somnath, Suhas committed
939
940
        return UD_VS_table_label, UD_VS_table_unit, udvs_table

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988