plot_utils.py 46.4 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
8
# TODO: All general plotting functions should support data with 1 or 2 spatial dimensions.

Chris Smith's avatar
merged    
Chris Smith committed
9
from __future__ import division # int/int = float
10
from warnings import warn
11
import os
Chris Smith's avatar
merged    
Chris Smith committed
12
import h5py
13
import scipy
14
import matplotlib.pyplot as plt
15
from matplotlib.colors import LinearSegmentedColormap
16
from mpl_toolkits.axes_grid1 import ImageGrid
17
import numpy as np
18
from ..analysis.utils.be_loop import loop_fit_function
19
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
        color map object that can be used in place of plt.cm.jet
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
82

Chris Smith's avatar
Chris Smith committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def cmap_hot_desaturated():
    hot_desaturated = [(1, (255, 76, 76, 255)),
                       (0.857, (107, 0, 0, 255)),
                       (0.714, (255, 96, 0, 255)),
                       (0.571, (255, 255, 0, 255)),
                       (0.429, (0, 127, 0, 255)),
                       (0.285, (0, 255, 255, 255)),
                       (0.143, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    cdict = {'red': tuple([(dist, colors[0]/255.0, colors[0]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'green': tuple([(dist, colors[1]/255.0, colors[1]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'blue': tuple([(dist, colors[2]/255.0, colors[2]/255.0) for (dist, colors) in hot_desaturated][::-1])}

    return LinearSegmentedColormap('hot_desaturated', cdict)



101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def discrete_cmap(num_bins, base_cmap=plt.cm.jet):
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Discretized color map

    Credits
    -------
    Jake VanderPlas
    License: BSD-style
    """

    base = plt.cm.get_cmap(base_cmap)
    color_list = base(np.linspace(0, 1, num_bins))
    cmap_name = base.name + str(num_bins)
    return base.from_list(cmap_name, color_list, num_bins)

128
129
130

def plot_loop_guess_fit(vdc, ds_proj_loops, ds_guess, ds_fit, title=''):
    """
131
132
133
134
    Plots the loop guess, fit, source projected loops for a single cycle

    Parameters
    ----------
135
    vdc - 1D float numpy array
136
137
        DC offset vector (unshifted)
    ds_proj_loops - 2D numpy array
138
        Projected loops arranged as [position, vdc]
139
140
141
142
143
144
145
146
147
148
149
150
151
    ds_guess - 1D compound numpy array
        Loop guesses arranged as [position]
    ds_fit - 1D compound numpy array
        Loop fits arranged as [position]
    title - (Optional) String / unicode
        Title for the figure

    Returns
    ----------
    fig - matplotlib.pyplot.figure object
        Figure handle
    axes - 2D array of matplotlib.pyplot.axis handles
        handles to axes in the 2d figure
152
153
154
    """
    shift_ind = int(-1 * len(vdc) / 4)
    vdc_shifted = np.roll(vdc, shift_ind)
155
156
157
158
159

    num_plots = np.min([5, int(np.sqrt(ds_proj_loops.shape[0]))])
    fig, axes = plt.subplots(nrows=num_plots, ncols=num_plots, figsize=(18, 18))
    positions = np.linspace(0, ds_proj_loops.shape[0] - 1, num_plots ** 2, dtype=np.int)
    for ax, pos in zip(axes.flat, positions):
160
161
162
        ax.plot(vdc, ds_proj_loops[pos, :], 'k', label='Raw')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_guess[pos]))), 'g', label='guess')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_fit[pos]))), 'r--', label='Fit')
163
164
165
166
167
168
169
170
        ax.set_xlabel('V_DC (V)')
        ax.set_ylabel('PR (a.u.)')
        ax.set_title('Loop ' + str(pos))
    ax.legend()
    fig.suptitle(title)
    fig.tight_layout()

    return fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
171
172
173

###############################################################################

174

175
def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.jet, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
176
177
178
179
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

180
181
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
182
183
184
185
186
187
188
189
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
190
191
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
192
193
    """
    pts_per_step = int(len(ai_vec) / num_steps)
194
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
197
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
198
199
200
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
201
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
202
203
204
205
206
    """
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.jet)
    fig.colorbar(CS3)"""


207
208
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='', cmap=plt.cm.jet,
                     **kwargs):
209
210
211
212
213
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
214
    axis : axis handle
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

238
    for line_ind in range(num_lines):
239
240
241
        axis.plot(x_axis, line_family[line_ind],
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
242
243


244
def plot_map(axis, data, stdevs=2, **kwargs):
245
246
247
248
249
250
251
252
253
254
255
256
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
257

258
259
260
261
262
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
263
264
265
266
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
                     **kwargs)
267
268
    axis.set_aspect('auto')

269
    return im
270

271

272
273
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True, plots_on_side=5, x_label='',
               y_label='', subtitles='Position', title='', central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
274
    """
275
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
276
277
278
279
280

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
281
282
283
284
285
286
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
287
288
289
290
291
292
293
294
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
295
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
310
    if type(datasets) in [h5py.Dataset, np.ndarray]:
311
312
313
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
314
        datasets = [datasets]
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return


    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
352
353

    plots_on_side = min(abs(plots_on_side), 5)
354

Somnath, Suhas's avatar
Somnath, Suhas committed
355
356
357
358
359
360
361
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, figsize=(12, 12))
362
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
363

364
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
365
366
367
368
369
370
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
371
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
372
373

    for count, posn in enumerate(chosen_pos):
374
375
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
376
        else:
377
378
379
            for dataset, col_val in zip(datasets, line_colors):
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind], color=col_val)
        if h5_pos is not None:
Somnath, Suhas's avatar
Somnath, Suhas committed
380
381
382
383
384
385
386
387
388
389
390
391
            # print 'Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0])
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
392
393
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
394
395
396
397
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
398

Somnath, Suhas's avatar
Somnath, Suhas committed
399
400
###############################################################################

401
402

def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
403
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
404
405
406
407
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
408
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
409
410
411
412
413
414
415
416
417
418
419
420
421
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
422
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
423
424
425
426
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

427
    for index in range(num_comps):
428
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
429
430
431
432
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
433
434
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
435
436
437
438
439
440
441
442
443
444
445
446
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

447
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
448
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
449
450
451
452
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
453
454
455
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
456
457
458
459
460
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
461
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
462
463
464
465
466
467
468
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
469
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
470
471
472
473
474
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
475
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
476

477
    for index in range(num_comps):
478
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
479
480
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
481
482
483
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
484
485
486
487
488
489
490
    fig201.tight_layout()

    return fig201, axes201

###############################################################################


491
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
492
    """
493
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
494
495
496

    Parameters:
    -------------
497
498
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
499
500
501
502

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
503
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
504
505
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
506
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
507
508
509
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
510
511
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
512
513
514
515
516
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


517
518
519
# ###############################################################################


520
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False,
Somnath, Suhas's avatar
Somnath, Suhas committed
521
                   title='Component', heading='Map Stack', **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
522
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
523
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
524
525
526

    Parameters:
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
527
    map_stack : 3D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
528
        structured as [rows, cols, component]
529
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
530
531
532
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
533
    color_bar_mode : String, Optional
534
535
536
537
538
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
Somnath, Suhas's avatar
Somnath, Suhas committed
539
540
541
542

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
543
    """
544
545
546
547
548
549
550
551
552
    num_comps = abs(num_comps)
    num_comps = min(num_comps, map_stack.shape[-1])


    if evenly_spaced:
        chosen_pos = np.linspace(0, map_stack.shape[-1] - 1, num_comps, dtype=int)
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

553
554
555
556
557
558
559
560
561
562
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
            title = title + ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
    else:
        if not isinstance(title, str):
            title = 'Component'
563
        title = [title + ' ' + str(x) for x in chosen_pos]
564

565
    fig_h, fig_w = (4, 4)
566
567
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
568
569
    if p_rows*p_cols < num_comps:
        p_cols += 1
570
    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h))
571
572
573
574
575
576
577
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
                        cbar_pad='1%',
                        cbar_size='5%',
                        axes_pad=(0.1*fig_w, 0.07*fig_h))
    # fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
    # fig202.subplots_adjust(hspace=0.4, wspace=0.4)
Somnath, Suhas's avatar
Somnath, Suhas committed
578
579
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
580

581
582
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
583
                      map_stack[:, :, index],
584
585
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
586
        if color_bar_mode is 'each':
587
            axes202.cbar_axes[count].colorbar(im)
588
589
590

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
591
592
593

    return fig202, axes202

594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def plot_cluster_h5_group(h5_group, y_spec_label, centroids_together=True):
    """
        Plots the cluster labels and mean response for each cluster

        Parameters
        ----------
        h5_group : h5py.Datagroup object
            H5 group containing the labels and mean response
        y_spec_label : str
            Label to use for Y axis on cluster centroid plot
        centroids_together : Boolean, optional - default = True
            Whether or nor to plot all centroids together on the same plot

        Returns
        -------
        fig : Figure
            Figure containing the plots
        axes : 1D array_like of axes objects
            Axes of the individual plots within `fig`
        """
615
    # TODO: The label and units for the main dataset itself are missing in most cases! - ie. I don't know that the data is 'Current' and 'nA'
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)

650
651
652
653
654
655
656
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
                                             pos_labels=pos_labels, pos_ticks=pos_ticks)
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
657
658

###############################################################################
659
660


661
662
663
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=plt.cm.jet,
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
664
    """
665
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
666
667
668
669
670

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
671
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
672
673
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
674
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
675
676
677
678
679
680
681
682
683
684
685
686
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
687
688
689
690
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
691
692
693
694
695
696
697

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
698
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
699

700
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
701
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
702
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
703
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
704
705
706
707
708
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
709
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
710

Chris Smith's avatar
Chris Smith committed
711
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
712
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
713
714
715
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
716
717
        axes = [ax_map, ax_amp, ax_phase]

718
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
719
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
720
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
721
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
722
723
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
724
    else:
Chris Smith's avatar
Chris Smith committed
725
726
727
728
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
729
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
730
731
732
733
734
735
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
736
737

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
738
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
739
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
740
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
741
742
743
744
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
745

Chris Smith's avatar
Chris Smith committed
746
    # im = ax_map.imshow(label_mat, interpolation='none')
747
748
749
750
751
752
753
754
755
756
757
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

758
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
759
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
760
761
762
763
764
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    ax_map.axis('tight')"""
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
765
    ax_map.axis('tight')
766
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
767
768
769
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
770
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
771
772
773
774
775

    return fig, axes

###############################################################################

776

777
778
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4,
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
779
    """
780
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
781

782
783
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
784
785
786
787
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
788
789
    max_centroids : unsigned int
                    Number of centroids to plot
790
791
792
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
793
794
795
796
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
797

798
799
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
800
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
801
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
802

803
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

832
    # First plot the labels map:
833
834
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
                                                      base_cmap=plt.cm.jet))
835
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
836
837
    fax1.axis('tight')
    fax1.set_aspect('auto')
838
    fax1.set_title('Cluster Label Map')
839
    """im = fax1.imshow(label_mat, interpolation='none')
840
841
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
842
843
844
845
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
846
847

    # Plot results
848
849
850
851
852
853
854
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
                    color=plt.cm.jet(int(255 * index / (cluster_centroids.shape[0] - 1))))
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
855
            plot_map(ax, cluster_centroids[index])
856
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
857
858

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
859
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
860
861
862
863
864
865

    return fig501


###############################################################################

866
867
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
868
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
869
870
871
872
873
874
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
875
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
876
    e_vals: 3D real numpy array of eigenvalues
877
        structured as [component, rows, cols]
878
    num_comp : int
879
880
881
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
882
    mode: str, optional
883
884
885
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
886
    last: int, optional - should be provided when using "Truncated"
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
901
902
903

    Returns
    ---------
904
905
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
906
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
        print 'Creating full dendrogram from clusters'
        mode = None
    elif mode == 'Truncated':
        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
930
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
931
932
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
933
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
934
935
936
937
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

938
    # Get the distrance between cluster means
939
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
940
941

    # get hierachical pairings of clusters
942
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
943
944
945
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
946
947
948
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
949
950
951
952
953
954
955
956

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


957
def plot_1d_spectrum(data_vec, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
980
981
        warn('plot_1d_spectrum: Incompatible data sizes!!!!')
        print('1D:', data_vec.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
982
        return
983
984
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
985
986
987
988
989
990
991
992
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
993
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
994
995
996
997


###############################################################################

998
def plot_2d_spectrogram(mean_spectrogram, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
1021
1022
        warn('plot_2d_spectrogram: Incompatible data sizes!!!!')
        print('2D:', mean_spectrogram.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
1023
        return
1024
1025
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    # print mean_spectrogram.shape
    # print freq.shape
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1043
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
1044
1045
1046

###############################################################################

1047
1048

def plot_histgrams(p_hist, p_hbins, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

1112
1113
1114
    return fig


1115
def visualize_sho_results(h5_main, save_plots=True, show_plots=True):
1116
    """
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    Plots some loops, amplitude, phase maps for BE-Line and BEPS datasets.\n
    Note: The file MUST contain SHO fit gusses at the very least

    Parameters
    ----------
    h5_main : HDF5 Dataset
        dataset to be plotted
    save_plots : (Optional) Boolean
        Whether or not to save plots to files in the same directory as the h5 file
    show_plots : (Optional) Boolean
        Whether or not to display the plots on the screen

    Returns
    -------
    None
1132
    """
1133
1134
1135
1136

    def __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, spec_var_title, meas_var_title, save_plots,
                          folder_path, basename, num_rows, num_cols):
        plt_title = grp_name + '_' + win_title + '_Loops'
1137
        fig, ax = plot_loops(ac_vec, resp_mat, evenly_spaced=True, plots_on_side=5, use_rainbow_plots=False,
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
                             x_label=spec_var_title, y_label=meas_var_title, subtitles='Loop', title=plt_title)
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

        plt_title = grp_name + '_' + win_title + '_Snaps'
        fig, axes = plot_map_stack(resp_mat.reshape(num_rows, num_cols, resp_mat.shape[1]),
                                   color_bar_mode="each", evenly_spaced=True, title='UDVS Step #',
                                   heading=plt_title, cmap=cmap_jet_white_center())
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

1149
1150
1151
    plt_path = None

    print('Creating plots of SHO Results from {}.'.format(h5_main.name))
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

    h5_file = h5_main.file

    expt_type = h5_file.attrs['data_type']
    if expt_type not in ['BEPSData', 'BELineData']:
        warn('Unsupported data format')
        return
    isBEPS = expt_type == 'BEPSData'

    (folder_path, basename) = os.path.split(h5_file.filename)
    basename, _ = os.path.splitext(basename)

    sho_grp = h5_main.parent
    chan_grp = sho_grp.parent

    grp_name = '_'.join(chan_grp.name[1:].split('/'))
    grp_name = '_'.join([grp_name, sho_grp.name.split('/')[-1].split('-')[0], h5_main.name.split('/')[-1]])

    try:
        h5_pos = h5_file[h5_main.attrs['Position_Indices']]
    except KeyError:
        print('No Position_Indices found as attribute of {}'.format(h5_main.name))
        print('Rows and columns will be calculated from dataset shape.')
        num_rows = int(np.floor((np.sqrt(h5_main.shape[0]))))
        num_cols = int(np.reshape(h5_main, [num_rows, -1, h5_main.shape[1]]).shape[1])
    else:
1178
1179
        num_rows = len(np.unique(h5_pos[:, 0]))
        num_cols = len(np.unique(h5_pos[:, 1]))
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

    try:
        h5_spec_vals = h5_file[h5_main.attrs['Spectroscopic_Values']]
    # except KeyError:
    #     warn('No Spectrosocpic Datasets found as attribute of {}'.format(h5_main.name))
    #     raise
    except:
        raise

    # Assume that there's enough memory to load all the guesses into memory
    amp_mat = h5_main['Amplitude [V]'] * 1000  # convert to mV ahead of time
    freq_mat = h5_main['Frequency [Hz]'] / 1000
    q_mat = h5_main['Quality Factor']
    phase_mat = h5_main['Phase [rad]']
    rsqr_mat = h5_main['R2 Criterion']

    if isBEPS:
        meas_type = chan_grp.parent.attrs['VS_mode']
        # basically 3 kinds for now - DC/current, AC, UD - lets ignore this
        if meas_type == 'load user defined VS Wave from file':
            warn('Not handling custom experiments for now')
            h5_file.close()
            return

        # Plot amplitude and phase maps at one or more UDVS steps

        if meas_type == 'AC modulation mode with time reversal':
            center = int(h5_spec_vals.shape[1] * 0.5)
1208
            ac_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['AC_Amplitude']][0:center])
1209

1210
1211
            forw_resp = np.squeeze(amp_mat[:, slice(0, center)])
            rev_resp = np.squeeze(amp_mat[:, slice(center, None)])
1212
1213
1214
1215

            for win_title, resp_mat in zip(['Forward', 'Reverse'], [forw_resp, rev_resp]):
                __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, 'AC Amplitude', 'Amplitude', save_plots,
                                  folder_path, basename, num_rows, num_cols)
1216
1217
        else:
            # plot loops at a few locations
1218
            dc_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['DC_Offset']])
1219
1220
            if chan_grp.parent.attrs['VS_measure_in_field_loops'] == 'in and out-of-field':

1221
1222
                dc_vec = np.squeeze(dc_vec[slice(0, None, 2)])

1223
1224
1225
1226
                in_phase = np.squeeze(phase_mat[:, slice(0, None, 2)])
                in_amp = np.squeeze(amp_mat[:, slice(0, None, 2)])
                out_phase = np.squeeze(phase_mat[:, slice(1, None, 2)])
                out_amp = np.squeeze(amp_mat[:, slice(1, None, 2)])
1227
1228
1229
1230

                for win_title, resp_mat in zip(['In_Field', 'Out_of_Field'], [in_phase * in_amp, out_phase * out_amp]):
                    __plot_loops_maps(dc_vec, resp_mat, grp_name, win_title, 'DC Bias', 'Piezoresponse (a.u.)',
                                      save_plots, folder_path, basename, num_rows, num_cols)
1231
            else:
1232
1233
                __plot_loops_maps(dc_vec, phase_mat * amp_mat, grp_name, '', 'DC Bias', 'Piezoresponse (a.u.)',
                                  save_plots, folder_path, basename, num_rows, num_cols)
1234
1235
1236
1237
1238
1239
1240
1241
1242

    else:  # BE-Line can only visualize the amplitude and phase maps:
        amp_mat = amp_mat.reshape(num_rows, num_cols)
        freq_mat = freq_mat.reshape(num_rows, num_cols)
        q_mat = q_mat.reshape(num_rows, num_cols)
        phase_mat = phase_mat.reshape(num_rows, num_cols)
        rsqr_mat = rsqr_mat.reshape(num_rows, num_cols)
        if save_plots:
            plt_path = os.path.join(folder_path, basename + '_' + grp_name + 'Maps.png')
1243
1244
1245
1246
1247
1248

        fig_ms, ax_ms = plot_map_stack(np.dstack((amp_mat, freq_mat, q_mat, phase_mat, rsqr_mat)),
                                       num_comps=5, color_bar_mode='each', heading=grp_name,
                                       title=['Amplitude (mV)', 'Frequency (kHz)', 'Quality Factor', 'Phase (deg)',
                                              'R^2 Criterion'], cmap=cmap_jet_white_center())
        fig_ms.savefig(plt_path, format='png', dpi=300)
1249
1250
1251
1252
1253

    if show_plots:
        plt.show()

    plt.close('all')