plot_utils.py 46.7 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
8
# TODO: All general plotting functions should support data with 1 or 2 spatial dimensions.

Chris Smith's avatar
merged    
Chris Smith committed
9
from __future__ import division # int/int = float
10
from warnings import warn
11
import os
Chris Smith's avatar
merged    
Chris Smith committed
12
import h5py
13
import scipy
14
import matplotlib.pyplot as plt
15
from matplotlib.colors import LinearSegmentedColormap
16
from mpl_toolkits.axes_grid1 import ImageGrid
17
import numpy as np
18
from ..analysis.utils.be_loop import loop_fit_function
19
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
        color map object that can be used in place of plt.cm.jet
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
82

Chris Smith's avatar
Chris Smith committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def cmap_hot_desaturated():
    hot_desaturated = [(1, (255, 76, 76, 255)),
                       (0.857, (107, 0, 0, 255)),
                       (0.714, (255, 96, 0, 255)),
                       (0.571, (255, 255, 0, 255)),
                       (0.429, (0, 127, 0, 255)),
                       (0.285, (0, 255, 255, 255)),
                       (0.143, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    cdict = {'red': tuple([(dist, colors[0]/255.0, colors[0]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'green': tuple([(dist, colors[1]/255.0, colors[1]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'blue': tuple([(dist, colors[2]/255.0, colors[2]/255.0) for (dist, colors) in hot_desaturated][::-1])}

    return LinearSegmentedColormap('hot_desaturated', cdict)



101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def discrete_cmap(num_bins, base_cmap=plt.cm.jet):
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Discretized color map

    Credits
    -------
    Jake VanderPlas
    License: BSD-style
    """

    base = plt.cm.get_cmap(base_cmap)
    color_list = base(np.linspace(0, 1, num_bins))
    cmap_name = base.name + str(num_bins)
    return base.from_list(cmap_name, color_list, num_bins)

128
129
130

def plot_loop_guess_fit(vdc, ds_proj_loops, ds_guess, ds_fit, title=''):
    """
131
132
133
134
    Plots the loop guess, fit, source projected loops for a single cycle

    Parameters
    ----------
135
    vdc - 1D float numpy array
136
137
        DC offset vector (unshifted)
    ds_proj_loops - 2D numpy array
138
        Projected loops arranged as [position, vdc]
139
140
141
142
143
144
145
146
147
148
149
150
151
    ds_guess - 1D compound numpy array
        Loop guesses arranged as [position]
    ds_fit - 1D compound numpy array
        Loop fits arranged as [position]
    title - (Optional) String / unicode
        Title for the figure

    Returns
    ----------
    fig - matplotlib.pyplot.figure object
        Figure handle
    axes - 2D array of matplotlib.pyplot.axis handles
        handles to axes in the 2d figure
152
153
154
    """
    shift_ind = int(-1 * len(vdc) / 4)
    vdc_shifted = np.roll(vdc, shift_ind)
155
    loops_shifted = np.roll(ds_proj_loops, shift_ind, axis=1)
156
157
158
159
160

    num_plots = np.min([5, int(np.sqrt(ds_proj_loops.shape[0]))])
    fig, axes = plt.subplots(nrows=num_plots, ncols=num_plots, figsize=(18, 18))
    positions = np.linspace(0, ds_proj_loops.shape[0] - 1, num_plots ** 2, dtype=np.int)
    for ax, pos in zip(axes.flat, positions):
161
        ax.plot(vdc_shifted, loops_shifted[pos, :], 'k', label='Raw')
162
163
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_guess[pos]))), 'g', label='guess')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_fit[pos]))), 'r--', label='Fit')
164
165
        ax.set_xlabel('V_DC (V)')
        ax.set_ylabel('PR (a.u.)')
166
        ax.set_title('Position ' + str(pos))
167
168
169
170
171
    ax.legend()
    fig.suptitle(title)
    fig.tight_layout()

    return fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
172
173
174

###############################################################################

175

176
def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.jet, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
177
178
179
180
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

181
182
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
183
184
185
186
187
188
189
190
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
191
192
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
193
194
    """
    pts_per_step = int(len(ai_vec) / num_steps)
195
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
196
197
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
198
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
201
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
202
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
203
204
205
206
207
    """
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.jet)
    fig.colorbar(CS3)"""


208
209
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='', cmap=plt.cm.jet,
                     **kwargs):
210
211
212
213
214
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
215
    axis : axis handle
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

239
    for line_ind in range(num_lines):
240
241
242
        axis.plot(x_axis, line_family[line_ind],
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
243
244


245
def plot_map(axis, data, stdevs=2, **kwargs):
246
247
248
249
250
251
252
253
254
255
256
257
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
258

259
260
261
262
263
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
264
    origin = kwargs.pop('origin', 'lower')
265
266
267
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
268
                     origin=origin,
269
                     **kwargs)
270
271
    axis.set_aspect('auto')

272
    return im
273

274

275
276
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True, plots_on_side=5, x_label='',
               y_label='', subtitles='Position', title='', central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
277
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
278
    """
279
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
280
281
282
283
284

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
285
286
287
288
289
290
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
291
292
293
294
295
296
297
298
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
299
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
314
    if type(datasets) in [h5py.Dataset, np.ndarray]:
315
316
317
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
318
        datasets = [datasets]
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return


    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
356
357

    plots_on_side = min(abs(plots_on_side), 5)
358

Somnath, Suhas's avatar
Somnath, Suhas committed
359
360
361
362
363
364
365
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, figsize=(12, 12))
366
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
367

368
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
369
370
371
372
373
374
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
375
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
376
377

    for count, posn in enumerate(chosen_pos):
378
379
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
380
        else:
381
382
383
            for dataset, col_val in zip(datasets, line_colors):
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind], color=col_val)
        if h5_pos is not None:
Somnath, Suhas's avatar
Somnath, Suhas committed
384
385
386
387
388
389
390
391
392
393
394
395
            # print 'Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0])
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
396
397
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
398
399
400
401
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
402

Somnath, Suhas's avatar
Somnath, Suhas committed
403
404
###############################################################################

405
406

def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
407
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
408
409
410
411
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
412
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
413
414
415
416
417
418
419
420
421
422
423
424
425
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
426
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
427
428
429
430
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

431
    for index in range(num_comps):
432
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
433
434
435
436
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
437
438
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
439
440
441
442
443
444
445
446
447
448
449
450
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

451
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
452
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
453
454
455
456
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
457
458
459
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
460
461
462
463
464
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
465
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
466
467
468
469
470
471
472
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
473
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
474
475
476
477
478
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
479
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
480

481
    for index in range(num_comps):
482
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
483
484
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
485
486
487
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
488
489
490
491
492
493
494
    fig201.tight_layout()

    return fig201, axes201

###############################################################################


495
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
496
    """
497
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
498
499
500

    Parameters:
    -------------
501
502
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
503
504
505
506

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
507
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
508
509
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
510
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
511
512
513
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
514
515
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
516
517
518
519
520
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


521
522
523
# ###############################################################################


524
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False,
525
                   title='Component', heading='Map Stack', fig_mult=(4, 4), **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
526
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
527
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
528
529
530

    Parameters:
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
531
    map_stack : 3D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
532
        structured as [rows, cols, component]
533
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
534
535
536
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
537
    color_bar_mode : String, Optional
538
539
540
541
542
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
543
544
545
546
547
    heading : String
        ###Insert description here### Default 'Map Stack'
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Somnath, Suhas's avatar
Somnath, Suhas committed
548
549
550
551

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
552
    """
553
554
555
556
557
558
559
560
561
    num_comps = abs(num_comps)
    num_comps = min(num_comps, map_stack.shape[-1])


    if evenly_spaced:
        chosen_pos = np.linspace(0, map_stack.shape[-1] - 1, num_comps, dtype=int)
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

562
563
564
565
566
567
568
569
570
571
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
            title = title + ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
    else:
        if not isinstance(title, str):
            title = 'Component'
572
        title = [title + ' ' + str(x) for x in chosen_pos]
573

574
    fig_h, fig_w = fig_mult
575
576
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
577
578
    if p_rows*p_cols < num_comps:
        p_cols += 1
579
    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h))
580
581
582
583
584
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
                        cbar_pad='1%',
                        cbar_size='5%',
                        axes_pad=(0.1*fig_w, 0.07*fig_h))
Somnath, Suhas's avatar
Somnath, Suhas committed
585
586
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
587

588
589
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
590
                      map_stack[:, :, index],
591
592
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
593
        if color_bar_mode is 'each':
594
            axes202.cbar_axes[count].colorbar(im)
595
596
597

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
598
599
600

    return fig202, axes202

601

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
def plot_cluster_h5_group(h5_group, y_spec_label, centroids_together=True):
    """
        Plots the cluster labels and mean response for each cluster

        Parameters
        ----------
        h5_group : h5py.Datagroup object
            H5 group containing the labels and mean response
        y_spec_label : str
            Label to use for Y axis on cluster centroid plot
        centroids_together : Boolean, optional - default = True
            Whether or nor to plot all centroids together on the same plot

        Returns
        -------
        fig : Figure
            Figure containing the plots
        axes : 1D array_like of axes objects
            Axes of the individual plots within `fig`
        """
622
    # TODO: The quantity and units for the main dataset itself are missing in most cases!
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
656
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
657

658
659
660
661
662
663
664
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
                                             pos_labels=pos_labels, pos_ticks=pos_ticks)
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
665
666

###############################################################################
667
668


669
670
671
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=plt.cm.jet,
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
672
    """
673
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
674
675
676
677
678

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
679
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
680
681
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
682
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
683
684
685
686
687
688
689
690
691
692
693
694
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
695
696
697
698
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
699
700
701
702
703
704
705

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
706
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
707

708
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
709
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
710
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
711
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
712
713
714
715
716
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
717
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
718

Chris Smith's avatar
Chris Smith committed
719
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
720
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
721
722
723
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
724
725
        axes = [ax_map, ax_amp, ax_phase]

726
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
727
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
728
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
729
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
730
731
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
732
    else:
Chris Smith's avatar
Chris Smith committed
733
734
735
736
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
737
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
738
739
740
741
742
743
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
744
745

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
746
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
747
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
748
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
749
750
751
752
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
753

Chris Smith's avatar
Chris Smith committed
754
    # im = ax_map.imshow(label_mat, interpolation='none')
755
756
757
758
759
760
761
762
763
764
765
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

766
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
767
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
768
769
770
771
772
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    ax_map.axis('tight')"""
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
773
    ax_map.axis('tight')
774
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
775
776
777
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
778
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
779
780
781
782
783

    return fig, axes

###############################################################################

784

785
786
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4,
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
787
    """
788
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
789

790
791
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
792
793
794
795
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
796
797
    max_centroids : unsigned int
                    Number of centroids to plot
798
799
800
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
801
802
803
804
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
805

806
807
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
808
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
809
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
810

811
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

840
    # First plot the labels map:
841
842
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
                                                      base_cmap=plt.cm.jet))
843
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
844
845
    fax1.axis('tight')
    fax1.set_aspect('auto')
846
    fax1.set_title('Cluster Label Map')
847
    """im = fax1.imshow(label_mat, interpolation='none')
848
849
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
850
851
852
853
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
854
855

    # Plot results
856
857
858
859
860
861
862
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
                    color=plt.cm.jet(int(255 * index / (cluster_centroids.shape[0] - 1))))
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
863
            plot_map(ax, cluster_centroids[index])
864
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
865
866

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
867
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
868
869
870
871
872
873

    return fig501


###############################################################################

874
875
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
876
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
877
878
879
880
881
882
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
883
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
884
    e_vals: 3D real numpy array of eigenvalues
885
        structured as [component, rows, cols]
886
    num_comp : int
887
888
889
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
890
    mode: str, optional
891
892
893
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
894
    last: int, optional - should be provided when using "Truncated"
895
896
897
898
899
900
901
902
903
904
905
906
907
908
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
909
910
911

    Returns
    ---------
912
913
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
914
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
        print 'Creating full dendrogram from clusters'
        mode = None
    elif mode == 'Truncated':
        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
938
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
939
940
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
941
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
942
943
944
945
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

946
    # Get the distrance between cluster means
947
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
948
949

    # get hierachical pairings of clusters
950
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
951
952
953
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
954
955
956
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
957
958
959
960
961
962
963
964

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


965
def plot_1d_spectrum(data_vec, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
988
989
        warn('plot_1d_spectrum: Incompatible data sizes!!!!')
        print('1D:', data_vec.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
990
        return
991
992
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
993
994
995
996
997
998
999
1000
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1001
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
1002
1003
1004
1005


###############################################################################

1006
def plot_2d_spectrogram(mean_spectrogram, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
1029
1030
        warn('plot_2d_spectrogram: Incompatible data sizes!!!!')
        print('2D:', mean_spectrogram.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
1031
        return
1032
1033
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    # print mean_spectrogram.shape
    # print freq.shape
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1051
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
1052
1053
1054

###############################################################################

1055
1056

def plot_histgrams(p_hist, p_hbins, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

1120
1121
1122
    return fig


1123
def visualize_sho_results(h5_main, save_plots=True, show_plots=True):
1124
    """
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    Plots some loops, amplitude, phase maps for BE-Line and BEPS datasets.\n
    Note: The file MUST contain SHO fit gusses at the very least

    Parameters
    ----------
    h5_main : HDF5 Dataset
        dataset to be plotted
    save_plots : (Optional) Boolean
        Whether or not to save plots to files in the same directory as the h5 file
    show_plots : (Optional) Boolean
        Whether or not to display the plots on the screen

    Returns
    -------
    None
1140
    """
1141
1142
1143
1144

    def __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, spec_var_title, meas_var_title, save_plots,
                          folder_path, basename, num_rows, num_cols):
        plt_title = grp_name + '_' + win_title + '_Loops'
1145
        fig, ax = plot_loops(ac_vec, resp_mat, evenly_spaced=True, plots_on_side=5, use_rainbow_plots=False,
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
                             x_label=spec_var_title, y_label=meas_var_title, subtitles='Loop', title=plt_title)
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

        plt_title = grp_name + '_' + win_title + '_Snaps'
        fig, axes = plot_map_stack(resp_mat.reshape(num_rows, num_cols, resp_mat.shape[1]),
                                   color_bar_mode="each", evenly_spaced=True, title='UDVS Step #',
                                   heading=plt_title, cmap=cmap_jet_white_center())
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

1157
1158
1159
    plt_path = None

    print('Creating plots of SHO Results from {}.'.format(h5_main.name))
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

    h5_file = h5_main.file

    expt_type = h5_file.attrs['data_type']
    if expt_type not in ['BEPSData', 'BELineData']:
        warn('Unsupported data format')
        return
    isBEPS = expt_type == 'BEPSData'

    (folder_path, basename) = os.path.split(h5_file.filename)
    basename, _ = os.path.splitext(basename)

    sho_grp = h5_main.parent
    chan_grp = sho_grp.parent

    grp_name = '_'.join(chan_grp.name[1:].split('/'))
    grp_name = '_'.join([grp_name, sho_grp.name.split('/')[-1].split('-')[0], h5_main.name.split('/')[-1]])

    try:
        h5_pos = h5_file[h5_main.attrs['Position_Indices']]
    except KeyError:
        print('No Position_Indices found as attribute of {}'.format(h5_main.name))
        print('Rows and columns will be calculated from dataset shape.')
        num_rows = int(np.floor((np.sqrt(h5_main.shape[0]))))
        num_cols = int(np.reshape(h5_main, [num_rows, -1, h5_main.shape[1]]).shape[1])
    else:
1186
1187
        num_rows = len(np.unique(h5_pos[:, 0]))
        num_cols = len(np.unique(h5_pos[:, 1]))
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

    try:
        h5_spec_vals = h5_file[h5_main.attrs['Spectroscopic_Values']]
    # except KeyError:
    #     warn('No Spectrosocpic Datasets found as attribute of {}'.format(h5_main.name))
    #     raise
    except:
        raise

    # Assume that there's enough memory to load all the guesses into memory
    amp_mat = h5_main['Amplitude [V]'] * 1000  # convert to mV ahead of time
    freq_mat = h5_main['Frequency [Hz]'] / 1000
    q_mat = h5_main['Quality Factor']
    phase_mat = h5_main['Phase [rad]']
    rsqr_mat = h5_main['R2 Criterion']

    if isBEPS:
        meas_type = chan_grp.parent.attrs['VS_mode']
        # basically 3 kinds for now - DC/current, AC, UD - lets ignore this
        if meas_type == 'load user defined VS Wave from file':
            warn('Not handling custom experiments for now')
            h5_file.close()
            return

        # Plot amplitude and phase maps at one or more UDVS steps

        if meas_type == 'AC modulation mode with time reversal':
            center = int(h5_spec_vals.shape[1] * 0.5)
1216
            ac_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['AC_Amplitude']][0:center])
1217

1218
1219
            forw_resp = np.squeeze(amp_mat[:, slice(0, center)])
            rev_resp = np.squeeze(amp_mat[:, slice(center, None)])
1220
1221
1222
1223

            for win_title, resp_mat in zip(['Forward', 'Reverse'], [forw_resp, rev_resp]):
                __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, 'AC Amplitude', 'Amplitude', save_plots,
                                  folder_path, basename, num_rows, num_cols)
1224
1225
        else:
            # plot loops at a few locations
1226
            dc_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['DC_Offset']])
1227
1228
            if chan_grp.parent.attrs['VS_measure_in_field_loops'] == 'in and out-of-field':

1229
1230
                dc_vec = np.squeeze(dc_vec[slice(0, None, 2)])

1231
1232
1233
1234
                in_phase = np.squeeze(phase_mat[:, slice(0, None, 2)])
                in_amp = np.squeeze(amp_mat[:, slice(0, None, 2)])
                out_phase = np.squeeze(phase_mat[:, slice(1, None, 2)])
                out_amp = np.squeeze(amp_mat[:, slice(1, None, 2)])
1235
1236
1237
1238

                for win_title, resp_mat in zip(['In_Field', 'Out_of_Field'], [in_phase * in_amp, out_phase * out_amp]):
                    __plot_loops_maps(dc_vec, resp_mat, grp_name, win_title, 'DC Bias', 'Piezoresponse (a.u.)',
                                      save_plots, folder_path, basename, num_rows, num_cols)
1239
            else:
1240
1241
                __plot_loops_maps(dc_vec, phase_mat * amp_mat, grp_name, '', 'DC Bias', 'Piezoresponse (a.u.)',
                                  save_plots, folder_path, basename, num_rows, num_cols)
1242
1243
1244
1245
1246
1247
1248
1249
1250

    else:  # BE-Line can only visualize the amplitude and phase maps:
        amp_mat = amp_mat.reshape(num_rows, num_cols)
        freq_mat = freq_mat.reshape(num_rows, num_cols)
        q_mat = q_mat.reshape(num_rows, num_cols)
        phase_mat = phase_mat.reshape(num_rows, num_cols)
        rsqr_mat = rsqr_mat.reshape(num_rows, num_cols)
        if save_plots:
            plt_path = os.path.join(folder_path, basename + '_' + grp_name + 'Maps.png')
1251
1252
1253
1254
1255
1256

        fig_ms, ax_ms = plot_map_stack(np.dstack((amp_mat, freq_mat, q_mat, phase_mat, rsqr_mat)),
                                       num_comps=5, color_bar_mode='each', heading=grp_name,
                                       title=['Amplitude (mV)', 'Frequency (kHz)', 'Quality Factor', 'Phase (deg)',
                                              'R^2 Criterion'], cmap=cmap_jet_white_center())
        fig_ms.savefig(plt_path, format='png', dpi=300)
1257
1258
1259
1260
1261

    if show_plots:
        plt.show()

    plt.close('all')