be_odf.py 74.4 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
20
    createSpecVals, requires_conjugate, generate_bipolar_triangular_waveform, \
    infer_bipolar_triangular_fraction_phase, nf32
21
from pyUSID.io.translator import Translator
22
23
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
24
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
25
    write_reduced_anc_dsets, get_unit_values
26
from pyUSID.io.usi_data import USIDataset
27
from pyUSID.processing.comp_utils import get_available_memory
28

29
30
31
if sys.version_info.major == 3:
    unicode = str

32

Somnath, Suhas's avatar
Somnath, Suhas committed
33
34
35
36
37
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
38

Chris Smith's avatar
Chris Smith committed
39
40
41
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
42
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
43
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
44
45
46
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
47
        self._verbose = False
Chris Smith's avatar
Chris Smith committed
48

49
    @staticmethod
50
    def is_valid_file(data_path):
51
52
53
54
55
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
56
        data_path : str
57
58
59
60
            Path to raw data file

        Returns
        -------
61
62
63
64
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
65
        """
66
67
68
69
70
71
72
73
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
74
75
76
77
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
78
79
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
80
81

        # Check if the data is in the new or old format:
82
83
84
85
86
87
88
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
89
            # Though this translator could also read the files but the NDF Translator is more robust...
90
91
92
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
93
94

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
95

96
97
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
98
            return None
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
116
        else:
117
            return None
118

119
120
    def translate(self, file_path, show_plots=True, save_plots=True,
                  do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
135
136
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
137
138
139
140
141
142
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
ssomnath's avatar
ssomnath committed
143
144
        self._verbose = verbose

145
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
146
        (folder_path, basename) = path.split(file_path)
147
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
148

Somnath, Suhas's avatar
Somnath, Suhas committed
149
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
150
151
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
        if 'parm_txt' in path_dict.keys():
ssomnath's avatar
ssomnath committed
154
            if self._verbose:
155
                print('\treading parameters from text file')
ssomnath's avatar
ssomnath committed
156
157
158
            isBEPS, parm_dict = parmsToDict(path_dict['parm_txt'])

            # Initial text files named some parameters differently
159
            if parm_dict['VS_mode'] == 'AC modulation mode':
160
161
162
                warn('Updating parameter "VS_mode" from invalid value'
                     ' of "AC modulation mode" to "AC modulation mode with '
                     'time reversal"')
163
                parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
ssomnath's avatar
ssomnath committed
164
            if parm_dict['BE_phase_content'] == 'chirp':
165
166
                warn('Updating parameter "BE_phase_content" from older value'
                     ' of "chirp" to "chirp-sinc hybrid"')
ssomnath's avatar
ssomnath committed
167
                parm_dict['BE_phase_content'] ='chirp-sinc hybrid'
168
169
170
171
172
173
            if parm_dict['BE_amplitude_[V]'] < 1E-2:
                new_val = 0.5151
                warn('Updating parameter "BE_amplitude_[V]" from invalid value'
                     ' of {} to {}'.format(parm_dict['BE_amplitude_[V]'],
                                           new_val))
                parm_dict['BE_amplitude_[V]'] = new_val
ssomnath's avatar
ssomnath committed
174

Somnath, Suhas's avatar
Somnath, Suhas committed
175
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
176
            if self._verbose:
177
                print('\treading parameters from old mat file')
ssomnath's avatar
ssomnath committed
178
            parm_dict = self._get_parms_from_old_mat(path_dict['old_mat_parms'], verbose=self._verbose)
179
180
181
182
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
183
        else:
184
            raise FileNotFoundError('No parameters file found! Cannot translate this dataset!')
185

ssomnath's avatar
ssomnath committed
186
        if self._verbose:
187
188
            keys = list(parm_dict.keys())
            keys.sort()
189
            print('\tExperiment parameters:')
190
191
192
193
            for key in keys:
                print('\t\t{} : {}'.format(key, parm_dict[key]))

            print('\n\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
194

Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
197
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
198

Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
201

Somnath, Suhas's avatar
Somnath, Suhas committed
202
            if not std_expt:
203
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
204
205
206

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
207
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
208
209
210
211
212
213
214
215
216
217
218
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
219

Somnath, Suhas's avatar
Somnath, Suhas committed
220
221
222
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
223

Somnath, Suhas's avatar
Somnath, Suhas committed
224
        # Check file sizes:
ssomnath's avatar
ssomnath committed
225
        if self._verbose:
226
227
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
228
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
229
230
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
231
232
233
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
234

Somnath, Suhas's avatar
Somnath, Suhas committed
235
        if real_size != imag_size:
ssomnath's avatar
ssomnath committed
236
237
238
239
            raise ValueError("Real and imaginary file sizes do not match!")

        if real_size == 0:
            raise ValueError('Real and imaginary files were empty')
Somnath, Suhas's avatar
Somnath, Suhas committed
240

241
        # Check here if a second channel for current is present
242
243
        # Look for the file containing the current data

ssomnath's avatar
ssomnath committed
244
        if self._verbose:
245
            print('\tLooking for secondary channels')
246
247
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
248
        current_data_exists = False
249
250
251
252
253
254
255
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
256
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
257
258
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
ssomnath's avatar
ssomnath committed
259
        if self._verbose:
260
            print('\tRows: {}, Cols: {}'.format(num_rows, num_cols))
Unknown's avatar
Unknown committed
261
262
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
263
        # Check for case where only a single pixel is missing.
264
265
266
267
        if num_pix == 1:
            check_bins = real_size / (num_pix * 4)
        else:
            check_bins = real_size / ((num_pix - 1) * 4)
Unknown's avatar
Unknown committed
268

ssomnath's avatar
ssomnath committed
269
        if self._verbose:
270
271
272
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
273
        if tot_bins % 1 and check_bins % 1:
274
275
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
276
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
277
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
278
279
280
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
281
282
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
283
284
285
286
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
287
        if 'parm_mat' in path_dict.keys():
ssomnath's avatar
ssomnath committed
288
            if self._verbose:
289
                print('\treading BE arrays from parameters text file')
290
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self._read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
291
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
292
            if self._verbose:
293
                print('\treading BE arrays from old mat text file')
294
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self._read_old_mat_be_vecs(path_dict['old_mat_parms'], verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
295
        else:
ssomnath's avatar
ssomnath committed
296
            if self._verbose:
297
                print('\tGenerating dummy BE arrays')
Unknown's avatar
Unknown committed
298
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
299
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
300
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
301
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
302

303
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
304
305
306
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
307

Somnath, Suhas's avatar
Somnath, Suhas committed
308
309
310
311
312
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
313

Somnath, Suhas's avatar
Somnath, Suhas committed
314
        self.FFT_BE_wave = bin_FFT
315

Somnath, Suhas's avatar
Somnath, Suhas committed
316
        if isBEPS:
ssomnath's avatar
ssomnath committed
317
            if self._verbose:
318
                print('\tBuilding UDVS table for BEPS')
ssomnath's avatar
ssomnath committed
319
            UDVS_labs, UDVS_units, UDVS_mat = self._build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
320

ssomnath's avatar
ssomnath committed
321
            if self._verbose:
322
                print('\tTrimming UDVS table to remove unused plot group columns')
323

324
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
325

326
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
327

328
            # Will assume that all excitation waveforms have same num of bins
Unknown's avatar
Unknown committed
329
330
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps
ssomnath's avatar
ssomnath committed
331
            if self._verbose:
332
333
                print('\t# UDVS steps: {}, # bins/step: {}'
                      ''.format(num_actual_udvs_steps, bins_per_step))
Unknown's avatar
Unknown committed
334

Somnath, Suhas's avatar
Somnath, Suhas committed
335
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
336
337
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
338
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
339

Somnath, Suhas's avatar
Somnath, Suhas committed
340
341
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
342

343
344
345
            if len(np.unique(UDVS_mat[:, 2])) == 0:
                raise ValueError('No non-zero rows in AC amplitude')

Unknown's avatar
Unknown committed
346
347
            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
348
349
350
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
351
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
352
                # UDVS step
353
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
354
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
355
            del stind, step_index
Unknown's avatar
Unknown committed
356

Somnath, Suhas's avatar
Somnath, Suhas committed
357
        else:  # BE Line
ssomnath's avatar
ssomnath committed
358
            if self._verbose:
359
                print('\tPreparing supporting variables since BE-Line')
Somnath, Suhas's avatar
Somnath, Suhas committed
360
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
361
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
362
363
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
364
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
365
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
366
367
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
368

Chris Smith's avatar
Chris Smith committed
369
370
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
371

372
        # legacy parmeters inserted for BEAM
Somnath, Suhas's avatar
Somnath, Suhas committed
373
374
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
375
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
376
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
377

ssomnath's avatar
ssomnath committed
378
        if self._verbose:
379
            print('\tPreparing UDVS slices for region references')
Somnath, Suhas's avatar
Somnath, Suhas committed
380
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
381
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
382
383
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
384
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
385
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
386
387

        if self.expt_type == 2:
ssomnath's avatar
ssomnath committed
388
            if self._verbose:
389
                print('\tExperiment type = 2. Doubling BE vectors')
Unknown's avatar
Unknown committed
390
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
391
392
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
393
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
394
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
395

Somnath, Suhas's avatar
Somnath, Suhas committed
396
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
397
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
ssomnath's avatar
ssomnath committed
398
        if self._verbose:
399
            print('\tCalculating spectroscopic values')
ssomnath's avatar
ssomnath committed
400
401
402
403
        ret_vals = createSpecVals(UDVS_mat, old_spec_inds, bin_freqs,
                                  exec_bin_vec, parm_dict, UDVS_labs,
                                  UDVS_units, verbose=verbose)
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = ret_vals
404

ssomnath's avatar
ssomnath committed
405
        if self._verbose:
406
            print('\t\tspec_vals_labs: {}'.format(spec_vals_labs))
407
408
409
            unit_vals = get_unit_values(spec_inds, spec_vals,
                                        all_dim_names=spec_vals_labs,
                                        is_spec=True, verbose=False)
410
411
412
413
            print('\tUnit spectroscopic values')
            for key, val in unit_vals.items():
                print('\t\t{} : length: {}, values:\n\t\t\t{}'.format(key, len(val), val))

414
415
416
417
        if spec_inds.shape[1] != tot_bins:
            raise ValueError('Second axis of spectroscopic indices: {} not '
                             'matching with second axis of the expected main '
                             'dataset: {}'.format(spec_inds.shape, tot_bins))
418

419
420
421
422
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
423

Somnath, Suhas's avatar
Somnath, Suhas committed
424
425
426
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
427
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
428

429
        if path.exists(h5_path):
ssomnath's avatar
ssomnath committed
430
            if self._verbose:
431
                print('\tRemoving existing / old translated file: ' + h5_path)
432
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
433

434
        # First create the file
ssomnath's avatar
ssomnath committed
435
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
436

437
        # Then write root level attributes
438
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
439
440
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
441
442
443
444
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
445

Somnath, Suhas's avatar
Somnath, Suhas committed
446
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
447
448
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
449
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
450
        global_parms['translator'] = 'ODF'
ssomnath's avatar
ssomnath committed
451
        if self._verbose:
452
            print('\tWriting attributes to HDF5 file root')
453
        write_simple_attrs(h5_f, global_parms)
454
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
455

456
457
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
458

459
        # Write attributes at the measurement group level
ssomnath's avatar
ssomnath committed
460
        if self._verbose:
461
            print('\twriting attributes to Measurement group')
462
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
463

464
465
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
466

467
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
468
469
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
470

471
        # Now the datasets!
ssomnath's avatar
ssomnath committed
472
        if self._verbose:
473
            print('\tCreating ancillary datasets')
Chris Smith's avatar
Chris Smith committed
474
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
475

476
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
ssomnath's avatar
ssomnath committed
477
478
479
        # TODO: Avoid using region references in USID
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=self._verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=False)
480

Chris Smith's avatar
Chris Smith committed
481
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
482

Chris Smith's avatar
Chris Smith committed
483
484
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
485

Chris Smith's avatar
Chris Smith committed
486
487
488
489
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
490

ssomnath's avatar
ssomnath committed
491
        if self._verbose:
492
493
494
495
            print('\tWriting Position datasets')

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)),
                    Dimension('Y', 'm', np.arange(num_rows))]
ssomnath's avatar
ssomnath committed
496
497
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=self._verbose)
        if self._verbose:
498
            print('\tPosition datasets of shape: {}'.format(h5_pos_ind.shape))
499

ssomnath's avatar
ssomnath committed
500
        if self._verbose:
501
            print('\tWriting Spectroscopic datasets of shape: {}'.format(spec_inds.shape))
502
503
504
        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
ssomnath's avatar
ssomnath committed
505
506
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=self._verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=False)
507
            write_simple_attrs(dset, spec_dim_dict)
508
509

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
ssomnath's avatar
ssomnath committed
510
        if self._verbose:
511
            print('\tWriting noise floor dataset')
Chris Smith's avatar
Chris Smith committed
512
513
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
514
515
516
517
518
519
520
521
522
523
524

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
ssomnath's avatar
ssomnath committed
525
        if self._verbose:
526
            print('\tHDF5 dataset will have chunks of size: {}'.format(BEPS_chunks))
527
            print('\tCreating empty main dataset of shape: ({}, {})'.format(num_pix, tot_bins))
528
529
530
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
ssomnath's avatar
ssomnath committed
531
                                         h5_spec_vals=h5_spec_vals, verbose=self._verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
532

ssomnath's avatar
ssomnath committed
533
        if self._verbose:
534
535
            print('\tReading data from binary data files into raw HDF5')
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
536
                        add_pix)
Unknown's avatar
Unknown committed
537

ssomnath's avatar
ssomnath committed
538
        if self._verbose:
539
            print('\tGenerating plot groups')
540
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
541
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
542
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
ssomnath's avatar
ssomnath committed
543
544
                           do_histogram=do_histogram, debug=self._verbose)
        if self._verbose:
545
            print('\tUpgrading to USIDataset')
546
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
547
548
549

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
ssomnath's avatar
ssomnath committed
550
            if self._verbose:
551
                print('\tReading data in secondary channels (current)')
552
            self._read_secondary_channel(h5_meas_group, aux_files)
553

ssomnath's avatar
ssomnath committed
554
        if self._verbose:
555
            print('\tClosing HDF5 file')
556
        h5_f.close()
Unknown's avatar
Unknown committed
557

Somnath, Suhas's avatar
Somnath, Suhas committed
558
        return h5_path
Chris Smith's avatar
Chris Smith committed
559

560
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
561
                   add_pix):
Chris Smith's avatar
Chris Smith committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
ssomnath's avatar
ssomnath committed
588
            if self._verbose:
589
                print('\t\tReading all raw data for BE-Line in one shot')
590
591
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
592
                                  parm_dict['num_udvs_steps'])
593
594
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
Chris Smith's avatar
Chris Smith committed
595
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
ssomnath's avatar
ssomnath committed
596
            if self._verbose:
597
598
599
                print('\t\tReading all raw BEPS (out-of-field) data at once')
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
600
                                  parm_dict['num_udvs_steps'])
601
602
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'in-field':
Chris Smith's avatar
Chris Smith committed
603
            # Do this for in-field only
ssomnath's avatar
ssomnath committed
604
            if self._verbose:
605
606
607
                print('\t\tReading all raw BEPS (in-field only) data at once')
            self._quick_read_data(path_dict['write_real'],
                                  path_dict['write_imag'],
ssomnath's avatar
ssomnath committed
608
                                  parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
609
610
        else:
            # Large BEPS datasets OR those with in-and-out of field
ssomnath's avatar
ssomnath committed
611
            if self._verbose:
612
613
614
615
616
                print('\t\tReading all raw data for in-and-out-of-field OR '
                      'very large file one pixel at a time')
            self._read_beps_data(path_dict, UDVS_mat.shape[0],
                                 parm_dict['VS_measure_in_field_loops'],
                                 add_pix)
617
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
618

619
    def _read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
638

Somnath, Suhas's avatar
Somnath, Suhas committed
639
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
640
641
642
643

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
644
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
645
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
646
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
647
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
648
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
649
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
650
651
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
652
            if 0.5 * udvs_steps % 1:
653
654
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
655
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
656
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
657
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
658
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
659
660
661
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
662
            if step_size % 1:
663
664
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
665
            step_size = int(step_size)
666

667
668
        rand_spectra = self._get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra)
669
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
670

Somnath, Suhas's avatar
Somnath, Suhas committed
671
672
673
674
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
675
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
676
677
678
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
679
680
681
682
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
683
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
684
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
685
686
687
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
688
689
690
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
691
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
692

Somnath, Suhas's avatar
Somnath, Suhas committed
693
694
695
696
697
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
698

Somnath, Suhas's avatar
Somnath, Suhas committed
699
700
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
701
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
702
703
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
704
705
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
706
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
707
708
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
709
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
710
711
712

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
713
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
714
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
715

Somnath, Suhas's avatar
Somnath, Suhas committed
716
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
717
718
719
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
720
        print('---- Finished reading files -----')
721

ssomnath's avatar
ssomnath committed
722
    def _quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
723
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
724
725
726
727
728
729
730
731
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
732
733
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
734
        """
735
736
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0],
                             self.h5_raw.shape[1] * 4)
737
738

        step_size = self.h5_raw.shape[1] / udvs_steps
739
740
741
742
        rand_spectra = self._get_random_spectra([parser],
                                                self.h5_raw.shape[0],
                                                udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra,
ssomnath's avatar
ssomnath committed
743
744
                                                verbose=self._verbose)
        if self._verbose:
745
            print('\t\t\tChecking if conjugate is required')
746
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
747
        raw_vec = parser.read_all_data()
748
        if take_conjugate:
ssomnath's avatar
ssomnath committed
749
            if self._verbose:
750
                print('\t'*4 + 'Taking conjugate for positive quality factors')
751
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
752

Rama Vasudevan's avatar
Rama Vasudevan committed
753
754
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
755
            warn('Warning! Raw data length {} is not matching placeholder length {}. '
Rama Vasudevan's avatar
Rama Vasudevan committed
756
757
758
759
760
761
762
763
764
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Somnath, Suhas's avatar
Somnath, Suhas committed
765
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
766
767
768
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
769
        self.h5_raw[:, :] = np.complex64(raw_mat)
770
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
771

Unknown's avatar
Unknown committed
772
773
        print('---- Finished reading files -----')

774
775
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
776
777
778
779
780
781
782
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
783
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
784
785
786
787
788
789
790
791
792
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
793
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
794

795
796
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
797
798
799
800
801
802
803
804
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
805

Somnath, Suhas's avatar
Somnath, Suhas committed
806
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
807
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
808
809
810
811
812
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
813
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
814
815
816
817
818
819
820
821
822
823
824
825
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
826
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
827

ssomnath's avatar
ssomnath committed
828
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
829
830
831
832
833
834
835
836
837
838
839
840
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
ssomnath's avatar
ssomnath committed
841
        if self._verbose:
842
            print('\t---------- Reading Secondary Channel  ----------')
843
        if isinstance(aux_file_path, (list, tuple)):
844
845
846
847
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

848
        is_in_out_field = 'Field' in self.h5_raw.spec_dim_labels
849

ssomnath's avatar