be_odf.py 67.9 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
    createSpecVals, requires_conjugate, nf32
20
from pyUSID.io.translator import Translator
21
22
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
23
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
24
    write_reduced_anc_dsets
25
from pyUSID.io.usi_data import USIDataset
26
from pyUSID.processing.comp_utils import get_available_memory
27

28
29
30
if sys.version_info.major == 3:
    unicode = str

31

Somnath, Suhas's avatar
Somnath, Suhas committed
32
33
34
35
36
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
37

Chris Smith's avatar
Chris Smith committed
38
39
40
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
41
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
42
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
43
44
45
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
46

47
    @staticmethod
48
    def is_valid_file(data_path):
49
50
51
52
53
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
54
        data_path : str
55
56
57
58
            Path to raw data file

        Returns
        -------
59
60
61
62
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
63
        """
64
65
66
67
68
69
70
71
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
72
73
74
75
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
76
77
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
78
79

        # Check if the data is in the new or old format:
80
81
82
83
84
85
86
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
87
            # Though this translator could also read the files but the NDF Translator is more robust...
88
89
90
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
91
92

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
93

94
95
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
96
            return None
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
114
        else:
115
            return None
116

117
118
    def translate(self, file_path, show_plots=True, save_plots=True,
                  do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
133
134
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
135
136
137
138
139
140
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
141
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
142
        (folder_path, basename) = path.split(file_path)
143
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
144

Somnath, Suhas's avatar
Somnath, Suhas committed
145
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
146
147
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
148

Somnath, Suhas's avatar
Somnath, Suhas committed
149
        if 'parm_txt' in path_dict.keys():
150
151
            if verbose:
                print('\treading parameters from text file')
Unknown's avatar
Unknown committed
152
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
153
        elif 'old_mat_parms' in path_dict.keys():
154
155
            if verbose:
                print('\treading parameters from old mat file')
156
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'], verbose=verbose)
157
158
159
160
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
161
        else:
162
            raise IOError('No parameters file found! Cannot translate this dataset!')
163
164
        if verbose:
            print('\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
165

Somnath, Suhas's avatar
Somnath, Suhas committed
166
167
168
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
169

Somnath, Suhas's avatar
Somnath, Suhas committed
170
171
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
172

Somnath, Suhas's avatar
Somnath, Suhas committed
173
            if not std_expt:
174
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
175
176
177

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
178
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
179
180
181
182
183
184
185
186
187
188
189
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
190

Somnath, Suhas's avatar
Somnath, Suhas committed
191
192
193
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
194

Somnath, Suhas's avatar
Somnath, Suhas committed
195
        # Check file sizes:
196
197
198
        if verbose:
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
199
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
200
201
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
202
203
204
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
205

Somnath, Suhas's avatar
Somnath, Suhas committed
206
207
208
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

209
        # Check here if a second channel for current is present
210
211
        # Look for the file containing the current data

212
213
        if verbose:
            print('\tLooking for secondary channels')
214
215
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
216
        current_data_exists = False
217
218
219
220
221
222
223
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
224
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
225
226
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
227
228
        if verbose:
            print('\tRows: {}, Cols: {}'.format(num_rows, num_cols))
Unknown's avatar
Unknown committed
229
230
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
231
        # Check for case where only a single pixel is missing.
232
233
234
235
        if num_pix == 1:
            check_bins = real_size / (num_pix * 4)
        else:
            check_bins = real_size / ((num_pix - 1) * 4)
Unknown's avatar
Unknown committed
236

237
238
239
240
        if verbose:
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
241
        if tot_bins % 1 and check_bins % 1:
242
243
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
244
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
245
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
246
247
248
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
249
250
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
251
252
253
254
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
255
        if 'parm_mat' in path_dict.keys():
256
257
258
            if verbose:
                print('\treading BE arrays from parameters text file')
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
259
        elif 'old_mat_parms' in path_dict.keys():
260
261
262
            if verbose:
                print('\treading BE arrays from old mat text file')
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
263
        else:
264
265
            if verbose:
                print('\tGenerating dummy BE arrays')
Unknown's avatar
Unknown committed
266
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
267
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
268
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
269
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
270

271
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
272
273
274
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
275

Somnath, Suhas's avatar
Somnath, Suhas committed
276
277
278
279
280
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
281

Somnath, Suhas's avatar
Somnath, Suhas committed
282
        self.FFT_BE_wave = bin_FFT
283

Somnath, Suhas's avatar
Somnath, Suhas committed
284
        if isBEPS:
285
            if verbose:
286
                print('\tBuilding UDVS table for BEPS')
287
            UDVS_labs, UDVS_units, UDVS_mat = self.__build_udvs_table(parm_dict, verbose=verbose)
Unknown's avatar
Unknown committed
288

289
            if verbose:
290
                print('\tTrimming UDVS table to remove unused plot group columns')
291
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
292

293
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
294

295
            # Will assume that all excitation waveforms have same num of bins
Unknown's avatar
Unknown committed
296
297
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps
298
299
300
            if verbose:
                print('\t# UDVS steps: {}, # bins/step: {}'
                      ''.format(num_actual_udvs_steps, bins_per_step))
Unknown's avatar
Unknown committed
301

Somnath, Suhas's avatar
Somnath, Suhas committed
302
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
303
304
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
305
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
306

Somnath, Suhas's avatar
Somnath, Suhas committed
307
308
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
309
310
311

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
312
313
314
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
315
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
316
                # UDVS step
317
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
318
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
319
            del stind, step_index
Unknown's avatar
Unknown committed
320

Somnath, Suhas's avatar
Somnath, Suhas committed
321
        else:  # BE Line
322
323
            if verbose:
                print('\tPreparing supporting variables since BE-Line')
Somnath, Suhas's avatar
Somnath, Suhas committed
324
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
325
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
326
327
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
328
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
329
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
330
331
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
332

Chris Smith's avatar
Chris Smith committed
333
334
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
335

Somnath, Suhas's avatar
Somnath, Suhas committed
336
337
338
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
339
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
340
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
341

342
343
        if verbose:
            print('\tPreparing UDVS slices for region references')
Somnath, Suhas's avatar
Somnath, Suhas committed
344
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
345
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
346
347
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
348
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
349
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
350
351

        if self.expt_type == 2:
352
353
            if verbose:
                print('\tExperiment type = 2. Doubling BE vectors')
Unknown's avatar
Unknown committed
354
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
355
356
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
357
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
358
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
359

Somnath, Suhas's avatar
Somnath, Suhas committed
360
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
361
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
362
363
        if verbose:
            print('\tCalculating spectroscopic values')
Somnath, Suhas's avatar
Somnath, Suhas committed
364
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
365
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
366
367
368
369
370
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
371
372
373
374

        if verbose:
            print('\t\tspec_vals_labs_names: {}'.format(spec_vals_labs_names))

375
376
377
378
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
379

Somnath, Suhas's avatar
Somnath, Suhas committed
380
381
382
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
383
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
384

385
        if path.exists(h5_path):
386
387
            if verbose:
                print('\tRemoving existing / old translated file: ' + h5_path)
388
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
389

390
        # First create the file
ssomnath's avatar
ssomnath committed
391
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
392

393
        # Then write root level attributes
394
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
395
396
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
397
398
399
400
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
401

Somnath, Suhas's avatar
Somnath, Suhas committed
402
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
403
404
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
405
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
406
        global_parms['translator'] = 'ODF'
407
408
        if verbose:
            print('\tWriting attributes to HDF5 file root')
409
        write_simple_attrs(h5_f, global_parms)
410
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
411

412
413
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
414

415
        # Write attributes at the measurement group level
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        keys = list(parm_dict.keys())
        keys.sort()
        """
        for key in keys:
            print('{} : {}'.format(key, main_dsets[0].parent.parent.attrs[key]))
        """
        nest_parm_dict = dict()
        for key in ['FORC', 'VS', 'grid', 'BE', 'IO', 'File', 'Misc']:
            nest_parm_dict[key] = dict()
        for key in keys:
            parts = key.split('_')
            parent = 'Misc'
            rem_key = key
            if len(parts) > 1:
                if parts[0] in nest_parm_dict.keys():
                    parent = parts[0]
                    rem_key = '_'.join(parts[1:])
            nest_parm_dict[parent].update(
                {rem_key: parm_dict[key]})

436
437
        if verbose:
            print('\twriting attributes to Measurement group')
438
439
440
441
            keys = list(parm_dict.keys())
            keys.sort()
            for key in keys:
                print('\t\t{} : {}'.format(key, parm_dict[key]))
442
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
443

444
445
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
446

447
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
448
449
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
450

451
        # Now the datasets!
452
453
        if verbose:
            print('\tCreating ancillary datasets')
Chris Smith's avatar
Chris Smith committed
454
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
455

456
457
458
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
459

Chris Smith's avatar
Chris Smith committed
460
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
461

Chris Smith's avatar
Chris Smith committed
462
463
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
464

Chris Smith's avatar
Chris Smith committed
465
466
467
468
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
469

470
471
472
473
474
        if verbose:
            print('\tWriting Position datasets')

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)),
                    Dimension('Y', 'm', np.arange(num_rows))]
475
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)
476
477
        if verbose:
            print('\tPosition datasets of shape: {}'.format(h5_pos_ind.shape))
478

479
        if verbose:
480
            print('\tWriting Spectroscopic datasets of shape: {}'.format(spec_inds.shape))
481
482
483
484
485
        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
486
            write_simple_attrs(dset, spec_dim_dict)
487
488

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
489
490
        if verbose:
            print('\tWriting noise floor dataset')
Chris Smith's avatar
Chris Smith committed
491
492
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
493
494
495
496
497
498
499
500
501
502
503

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
504
505
        if verbose:
            print('\tHDF5 dataset will have chunks of size: {}'.format(BEPS_chunks))
506
            print('\tCreating empty main dataset of shape: ({}, {})'.format(num_pix, tot_bins))
507
508
509
510
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
511

512
513
514
515
        if verbose:
            print('\tReading data from binary data files into raw HDF5')
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
                        add_pix, verbose=verbose)
Unknown's avatar
Unknown committed
516

517
518
        if verbose:
            print('\tGenerating plot groups')
519
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
520
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
521
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
522
                           do_histogram=do_histogram, debug=verbose)
523
524
        if verbose:
            print('\tUpgrading to USIDataset')
525
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
526
527
528

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
529
530
            if verbose:
                print('\tReading data in secondary channels (current)')
531
532
            self._read_secondary_channel(h5_meas_group, aux_files)

533
534
        if verbose:
            print('\tClosing HDF5 file')
535
        h5_f.close()
Unknown's avatar
Unknown committed
536

Somnath, Suhas's avatar
Somnath, Suhas committed
537
        return h5_path
Chris Smith's avatar
Chris Smith committed
538

539
540
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
                   add_pix, verbose=False):
Chris Smith's avatar
Chris Smith committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset
559
560
        verbose : bool, optional. Default = False
            Whether or not to print logs
Chris Smith's avatar
Chris Smith committed
561
562
563
564
565
566
567
568

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
569
570
            if verbose:
                print('\t\tReading all raw data for BE-Line in one shot')
571
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
572
573
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
574
575
            if verbose:
                print('\t\tReading all raw BEPS (out-of-field) data in one shot')
576
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
577
578
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
579
580
            if verbose:
                print('\t\tReading all raw BEPS (in-field only) data in one shot')
581
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
582
583
        else:
            # Large BEPS datasets OR those with in-and-out of field
584
585
            if verbose:
                print('\t\tReading all raw data for in and out of filed OR very large file')
Somnath, Suhas's avatar
Somnath, Suhas committed
586
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
587
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
588

Somnath, Suhas's avatar
Somnath, Suhas committed
589
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
608

Somnath, Suhas's avatar
Somnath, Suhas committed
609
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
610
611
612
613

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
614
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
615
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
616
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
617
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
618
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
619
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
620
621
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
622
            if 0.5 * udvs_steps % 1:
623
624
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
625
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
626
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
627
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
628
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
629
630
631
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
632
            if step_size % 1:
633
634
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
635
            step_size = int(step_size)
636

637
638
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
639
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
640

Somnath, Suhas's avatar
Somnath, Suhas committed
641
642
643
644
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
645
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
646
647
648
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
649
650
651
652
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
653
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
654
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
655
656
657
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
658
659
660
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
661
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
662

Somnath, Suhas's avatar
Somnath, Suhas committed
663
664
665
666
667
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
668

Somnath, Suhas's avatar
Somnath, Suhas committed
669
670
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
671
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
672
673
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
674
675
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
676
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
677
678
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
679
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
680
681
682

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
683
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
684
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
685

Somnath, Suhas's avatar
Somnath, Suhas committed
686
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
687
688
689
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
690
        print('---- Finished reading files -----')
691
692

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
693
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
694
695
696
697
698
699
700
701
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
702
703
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
704
        """
Unknown's avatar
Unknown committed
705
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
706

Unknown's avatar
Unknown committed
707
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
708
709

        step_size = self.h5_raw.shape[1] / udvs_steps
710
711
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
712
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
713
        raw_vec = parser.read_all_data()
714
        if take_conjugate:
715
            print('Taking conjugate to ensure positive Quality factors')
716
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
717

Rama Vasudevan's avatar
Rama Vasudevan committed
718
719
720
721
722
723
724
725
726
727
728
729
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
            print('Warning! Raw data length {} is not matching placeholder length {}. '
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Unknown's avatar
Unknown committed
730

Somnath, Suhas's avatar
Somnath, Suhas committed
731
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
732
733
734
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
735
        self.h5_raw[:, :] = np.complex64(raw_mat)
736
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
737

Unknown's avatar
Unknown committed
738
739
        print('---- Finished reading files -----')

740
741
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
742
743
744
745
746
747
748
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
749
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
750
751
752
753
754
755
756
757
758
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
759
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
760

761
762
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
763
764
765
766
767
768
769
770
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
771

Somnath, Suhas's avatar
Somnath, Suhas committed
772
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
773
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
774
775
776
777
778
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
779
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
780
781
782
783
784
785
786
787
788
789
790
791
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
792
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
793

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
        print('---- Reading Secondary Channel  ----------')
        if len(aux_file_path)>1:
            print('Detected multiple files, assuming in and out of field')
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

        freq_index = self.h5_raw.spec_dim_labels.index('Frequency')
        num_pix = self.h5_raw.shape[0]
        spectral_len = 1

        for i in range(len(self.h5_raw.spec_dim_sizes)):
            if i == freq_index:
                continue
            spectral_len = spectral_len * self.h5_raw.spec_dim_sizes[i]

        #num_forc_cycles = self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("FORC")]
        #num_dc_steps =  self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("DC_Offset")]

        # create a new channel
        h5_current_channel_group = create_indexed_group(h5_meas_group, 'Channel')

        # Copy attributes from the main channel
        copy_attributes(self.h5_raw.parent, h5_current_channel_group)

        # Modify attributes that are different
        write_simple_attrs(h5_current_channel_group, {'Channel_Input': 'IO_Analog_Input_2',
                                                      'channel_type': 'Current'}, verbose=True)

        #Get the reduced dimensions
837
        h5_current_spec_inds, h5_current_spec_values = write_reduced_anc_dsets(h5_current_channel_group,
838
                                                        self.h5_raw.h5_spec_inds,
839
                                                        self.h5_raw.h5_spec_vals, 'Frequency', is_spec=True)
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894


        h5_current_main = write_main_dataset(h5_current_channel_group,  # parent HDF5 group
                                             (num_pix, spectral_len),  # shape of Main dataset
                                             'Raw_Data',  # Name of main dataset
                                             'Current',  # Physical quantity contained in Main dataset
                                             'nA',  # Units for the physical quantity
                                             None,  # Position dimensions
                                             None,  # Spectroscopic dimensions
                                             h5_pos_inds=self.h5_raw.h5_pos_inds,
                                             h5_pos_vals=self.h5_raw.h5_pos_vals,
                                             h5_spec_inds=h5_current_spec_inds,
                                             h5_spec_vals=h5_current_spec_values,
                                             dtype=np.float32,  # data type / precision
                                             main_dset_attrs={'IO_rate': 4E+6, 'Amplifier_Gain': 9})

        # Now calculate the number of positions that can be stored in memory in one go.
        b_per_position = np.float32(0).itemsize * spectral_len

        max_pos_per_read = int(np.floor((get_available_memory()) / b_per_position))

        # if self._verbose:
        print('Allowed to read {} pixels per chunk'.format(max_pos_per_read))

        #Open the read and write files and write them to the hdf5 file
        for aux_file in aux_file_paths:
            if 'write' in aux_file:
                infield = True
            else:
                infield=False

            cur_file = open(aux_file, "rb")

            start_pix = 0

            while start_pix < num_pix:
                end_pix = min(num_pix, start_pix + max_pos_per_read)

                # TODO: Fix for when it won't fit in memory.

                #if max_pos_per_read * b_per_position > num_pix * b_per_position:
                cur_data = np.frombuffer(cur_file.read(), dtype='f')
                #else:
                #cur_data = np.frombuffer(cur_file.read(max_pos_per_read * b_per_position), dtype='f')

                cur_data = cur_data.reshape(end_pix - start_pix, spectral_len//2)

                # Write to h5
                if infield:
                    h5_current_main[start_pix:end_pix, ::2] = cur_data
                else:
                    h5_current_main[start_pix:end_pix, 1::2] = cur_data
                start_pix = end_pix


Somnath, Suhas's avatar
Somnath, Suhas committed
895
896
    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
920
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
921
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
922
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
923
924
925
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
926
927
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
928

929
    @staticmethod
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    def __infer_frac_phase(slopes):
        """
        Infers the VS cycle fraction and phase when parameters were
        stored in old mat files

        Parameters
        --------------------
        slopes : list / tuple
            Array of mean slopes of each fraction of a SINGLE cycle

        Returns
        --------------------
        tuple:
            fraction : float
                Fraction of VS cycle
            phase : float
                Phase offset for VS cycle
        """
        if all([_ > 0 for _ in slopes]):
            return 0.25, 0
        elif all([_ < 0 for _ in slopes]):
            return 0.25, 0.75
        elif all([_ > 0 for _ in slopes[:2]]) and all(
                [_ < 0 for _ in slopes[2:]]):
            return 0.5, 0
        elif all([_ < 0 for _ in slopes[:2]]) and all(
                [_ > 0 for _ in slopes[2:]]):
            return 0.5, 0.5
        elif all([_ > 0 for _ in slopes[:1]]) and all(
                [_ < 0 for _ in slopes[1:]]):
            return 0.75, 0
        elif all([_ > 0 for _ in slopes[:3]]) and all(
                [_ < 0 for _ in slopes[3:]]):
            return 0.75, 0.25
        elif all([_ < 0 for _ in slopes[:1]]) and all(
                [_ > 0 for _ in slopes[1:]]):
            return 0.75, 0.5
        elif all([_ < 0 for _ in slopes[:3]]) and all(
                [_ > 0 for _ in slopes[3:]]):
            return 0.75, 0.75
        elif slopes[0] > 0 and slopes[1] < 0 and slopes[2] < 0 and slopes[
            3] > 0:
            return 1, 0
        elif slopes[0] < 0 and slopes[1] > 0 and slopes[2] > 0 and slopes[
            3] < 0:
            return 1, 0.5
        else:
            return 0, 0

Somnath, Suhas's avatar
Somnath, Suhas committed
979
    @staticmethod
980
    def __get_parms_from_old_mat(file_path, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
981
982
983
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
984
985

        Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
986
987
988
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
989
990
        verbose : bool, optional, default = False
            Whether or not to print statemetns for debugging purposes
991
992

        Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
993
994
995
996
997
998
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
999
1000

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'