be_odf.py 47.2 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
from warnings import warn
12
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
13
14
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
15

16
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
17
    createSpecVals, requires_conjugate, nf32
18
19
20
from pyUSID.io.translator import Translator, generate_dummy_main_parms
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
21
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs
22

23

Somnath, Suhas's avatar
Somnath, Suhas committed
24
25
26
27
28
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
29

Chris Smith's avatar
Chris Smith committed
30
31
32
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
33
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Unknown's avatar
Unknown committed
34
35
36
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
37

38
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
53
54
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
55
56
57
58
59
60
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
61
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
62
        (folder_path, basename) = path.split(file_path)
63
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
64

Somnath, Suhas's avatar
Somnath, Suhas committed
65
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
66
67
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
68

Somnath, Suhas's avatar
Somnath, Suhas committed
69
        if 'parm_txt' in path_dict.keys():
Unknown's avatar
Unknown committed
70
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
71
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
72
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
73
74
            if parm_dict['VS_steps_per_full_cycle']==0: isBEPS=False
            else: isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
75
        else:
76
            raise IOError('No parameters file found! Cannot translate this dataset!')
Unknown's avatar
Unknown committed
77

Somnath, Suhas's avatar
Somnath, Suhas committed
78
79
80
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
81

Somnath, Suhas's avatar
Somnath, Suhas committed
82
83
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
84

Somnath, Suhas's avatar
Somnath, Suhas committed
85
            if not std_expt:
86
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
87
88
89

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
90
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
91
92
93
94
95
96
97
98
99
100
101
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
102

Somnath, Suhas's avatar
Somnath, Suhas committed
103
104
105
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
106

Somnath, Suhas's avatar
Somnath, Suhas committed
107
108
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
109
110
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
111
112
113
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
114

Somnath, Suhas's avatar
Somnath, Suhas committed
115
116
117
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

Unknown's avatar
Unknown committed
118
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
119
120
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
121
122
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
123
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
124
125
126
        check_bins = real_size / ((num_pix - 1) * 4)

        if tot_bins % 1 and check_bins % 1:
127
            raise ValueError('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
128
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
129
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
130
131
132
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
Unknown's avatar
Unknown committed
133
134
135
136
137
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.')
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
138
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
139
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
140
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
141
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
142
        else:
Unknown's avatar
Unknown committed
143
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
144
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
145
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
146
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
147

148
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
149
150
151
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
154
155
156
157
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
158

Somnath, Suhas's avatar
Somnath, Suhas committed
159
        self.FFT_BE_wave = bin_FFT
160

Somnath, Suhas's avatar
Somnath, Suhas committed
161
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
162
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
163
164

            #             Remove the unused plot group columns before proceeding:
Somnath, Suhas's avatar
Somnath, Suhas committed
165
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
166

167
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
168
169
170
171
172

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
173
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
174
175
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
176
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
177

Somnath, Suhas's avatar
Somnath, Suhas committed
178
179
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
180
181
182

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
183
184
185
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
186
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
187
                # UDVS step
188
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
189
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
190
            del stind, step_index
Unknown's avatar
Unknown committed
191

Somnath, Suhas's avatar
Somnath, Suhas committed
192
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
193
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
194
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
197
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
198
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
201

Chris Smith's avatar
Chris Smith committed
202
203
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
204

Somnath, Suhas's avatar
Somnath, Suhas committed
205
206
207
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
208
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
209
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
210

Somnath, Suhas's avatar
Somnath, Suhas committed
211
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
212
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
213
214
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
215
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
216
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
217
218
219

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
220
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
221
222
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
223
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
224
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
225

Somnath, Suhas's avatar
Somnath, Suhas committed
226
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
227
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
228
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
229
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
230
231
232
233
234
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
235
236
237
238
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
239

Somnath, Suhas's avatar
Somnath, Suhas committed
240
        spec_vals_slices = dict()
Unknown's avatar
Unknown committed
241
242
243
        #         if len(spec_vals_labs) == 1:
        #             spec_vals_slices[spec_vals_labs[0]]=(slice(0,1,None),)
        #         else:
Somnath, Suhas's avatar
Somnath, Suhas committed
244
245

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
246
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
247

248
249
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
250

251
252
        # First create the file
        h5_f = h5py.File(h5_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
253

254
        # Then write root level attributes
255
        global_parms = generate_dummy_main_parms()
Somnath, Suhas's avatar
Somnath, Suhas committed
256
257
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
258
259
260
261
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
262

Somnath, Suhas's avatar
Somnath, Suhas committed
263
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
264
265
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
266
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
267
        global_parms['translator'] = 'ODF'
268
        write_simple_attrs(h5_f, global_parms)
269
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
270

271
272
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
273

274
275
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
276

277
278
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
279

280
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
281
282
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
283

284
        # Now the datasets!
Chris Smith's avatar
Chris Smith committed
285
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
286

287
288
289
290
291
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
Chris Smith's avatar
Chris Smith committed
292
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
293
294

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Chris Smith's avatar
Chris Smith committed
295
296
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
297

Chris Smith's avatar
Chris Smith committed
298
299
300
301
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
302
303
304
305
306
307
308
309
310

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
311
            write_simple_attrs(dset, spec_dim_dict)
312
313

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Chris Smith's avatar
Chris Smith committed
314
315
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
331

Chris Smith's avatar
Chris Smith committed
332
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
333

334
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
335
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
336
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
337
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
338

339
        h5_f.close()
Unknown's avatar
Unknown committed
340

Somnath, Suhas's avatar
Somnath, Suhas committed
341
        return h5_path
Chris Smith's avatar
Chris Smith committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
370
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
371
372
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
373
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
374
375
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
376
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
377
378
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
379
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
380
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
381

Somnath, Suhas's avatar
Somnath, Suhas committed
382
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
401

Somnath, Suhas's avatar
Somnath, Suhas committed
402
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
403
404
405
406

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
407
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
408
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
409
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
410
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
411
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
412
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
413
414
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
415
            if 0.5 * udvs_steps % 1:
416
417
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
418
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
419
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
420
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
421
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
422
423
424
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
425
            if step_size % 1:
426
427
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
428
            step_size = int(step_size)
429

430
431
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
432
        take_conjugate = requires_conjugate(rand_spectra)
433

Somnath, Suhas's avatar
Somnath, Suhas committed
434
435
436
437
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
438
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
439
440
441
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
442
443
444
445
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
446
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
447
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
448
449
450
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
451
452
453
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
454
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
455

Somnath, Suhas's avatar
Somnath, Suhas committed
456
457
458
459
460
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
461

Somnath, Suhas's avatar
Somnath, Suhas committed
462
463
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
464
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
465
466
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
467
468
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
469
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
470
471
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
472
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
473
474
475

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
476
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
477
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
478

Somnath, Suhas's avatar
Somnath, Suhas committed
479
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
480
481
482
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
483
        print('---- Finished reading files -----')
484
485

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
486
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
487
488
489
490
491
492
493
494
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
495
496
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
497
        """
Unknown's avatar
Unknown committed
498
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
499

Unknown's avatar
Unknown committed
500
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
501
502

        step_size = self.h5_raw.shape[1] / udvs_steps
503
504
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
505
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
506
        raw_vec = parser.read_all_data()
507
        if take_conjugate:
508
            print('Taking conjugate to ensure positive Quality factors')
509
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
510

Somnath, Suhas's avatar
Somnath, Suhas committed
511
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Unknown's avatar
Unknown committed
512

Somnath, Suhas's avatar
Somnath, Suhas committed
513
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
514
515
516
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
517
        self.h5_raw[:, :] = np.complex64(raw_mat)
518
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
519

Unknown's avatar
Unknown committed
520
521
        print('---- Finished reading files -----')

522
    def _parse_file_path(self, data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
523
524
525
526
527
528
529
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
530
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
531
532
533
534
535
536
537
538
539
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
540
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
541

542
543
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
544
545
546
547
548
549
550
551
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
552

Somnath, Suhas's avatar
Somnath, Suhas committed
553
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
554
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
555
556
557
558
559
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
560
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
561
562
563
564
565
566
567
568
569
570
571
572
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
573
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
574
575
576

    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
600
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
601
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
602
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
603
604
605
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
606
607
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
608

Somnath, Suhas's avatar
Somnath, Suhas committed
609
610
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
627
628
629

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
630
631
632
633
634
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
635

Somnath, Suhas's avatar
Somnath, Suhas committed
636
637
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
638
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
639
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
640

Somnath, Suhas's avatar
Somnath, Suhas committed
641
642
643
644
645
646
647
648
649
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
650
651
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
652
653
654
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
655
656
657
658
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
659

Somnath, Suhas's avatar
Somnath, Suhas committed
660
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
661

Somnath, Suhas's avatar
Somnath, Suhas committed
662
663
664
665
666
667
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
668

Somnath, Suhas's avatar
Somnath, Suhas committed
669
670
671
672
673
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
674

Somnath, Suhas's avatar
Somnath, Suhas committed
675
676
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
677

Somnath, Suhas's avatar
Somnath, Suhas committed
678
679
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
680
681
682
683

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
684
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
685

Somnath, Suhas's avatar
Somnath, Suhas committed
686
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
687
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
688
689
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
690
        parm_dict['VS_cycle_phase_shift'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
691
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
692
693
694
695
696
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Unknown's avatar
Unknown committed
697

Somnath, Suhas's avatar
Somnath, Suhas committed
698
699
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Unknown's avatar
Unknown committed
700
701
702
            parm_dict['VS_amplitude_[V]'] = 0.5 * (
                max(dc_amp_vec_full) - min(dc_amp_vec_full))  # SS_max_offset_amplitude
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)
Somnath, Suhas's avatar
Somnath, Suhas committed
703
704
705
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
706
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
707
            parm_dict['VS_offset_[V]'] = 0
Unknown's avatar
Unknown committed
708
            parm_dict['VS_number_of_cycles'] = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
709
710
711
712
713
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
714
715
716
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
717
718
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
719
720
        else:
            parm_dict['VS_mode'] = 'Custom'
Unknown's avatar
Unknown committed
721

Somnath, Suhas's avatar
Somnath, Suhas committed
722
        return parm_dict
Unknown's avatar
Unknown committed
723

Somnath, Suhas's avatar
Somnath, Suhas committed
724
725
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
726
727
728
729
730
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
731
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
732
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
733
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
734
735
736
737
738
739
740
741
742
743
744
745
746
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
747
        if not path.exists(file_path):
748
            raise IOError('NO "More parms" file found')
Somnath, Suhas's avatar
Somnath, Suhas committed
749
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
750
751
752
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
753
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
Unknown's avatar
Unknown committed
754
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1  # From Matlab (base 1) to Python (base 0)
Somnath, Suhas's avatar
Somnath, Suhas committed
755
756
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
757
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Unknown's avatar
Unknown committed
758
        # BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
759
760
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
Unknown's avatar
Unknown committed
761
762
        BE_bin_FFT.imag = -1 * np.imag(FFT_full[BE_bin_ind])

Somnath, Suhas's avatar
Somnath, Suhas committed
763
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
764
765

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Unknown's avatar
Unknown committed
766

Somnath, Suhas's avatar
Somnath, Suhas committed
767
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
Unknown's avatar
Unknown committed
785

Somnath, Suhas's avatar
Somnath, Suhas committed
786
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
787
788
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
789
790
791
792
793
794
795
796
797

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
798
            """
Unknown's avatar
Unknown committed
799

Somnath, Suhas's avatar
Somnath, Suhas committed
800
            if len(strvals) is not len(numvals):
Unknown's avatar
Unknown committed
801
                return None
Somnath, Suhas's avatar
Somnath, Suhas committed
802
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
803
804
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
805
            return None  # not found in list
Unknown's avatar
Unknown committed
806
807

        # % Extract values from parm text file
Unknown's avatar
Unknown committed
808
        BE_signal_type = translate_val(parm_dict['BE_phase_content'],
Unknown's avatar
Unknown committed
809
810
811
                                       ['chirp-sinc hybrid', '1/2 harmonic excitation',
                                        '1/3 harmonic excitation', 'pure sine'],
                                       [1, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
812
813
814
815
816
817
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
Unknown's avatar
Unknown committed
818

Somnath, Suhas's avatar
Somnath, Suhas committed
819
820
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
Unknown's avatar
Unknown committed
821
        # VS_read_voltage = parm_dict['VS_read_voltage_[V]']
Somnath, Suhas's avatar
Somnath, Suhas committed
822
823
        VS_steps = parm_dict['VS_steps_per_full_cycle']
        VS_cycles = parm_dict['VS_number_of_cycles']
Somnath, Suhas's avatar
Somnath, Suhas committed
824
825
826
        VS_fraction = translate_val(parm_dict['VS_cycle_fraction'],
                                    ['full', '1/2', '1/4', '3/4'],
                                    [1., 0.5, 0.25, 0.75])
Somnath, Suhas's avatar
Somnath, Suhas committed
827
828
        VS_shift = parm_dict['VS_cycle_phase_shift']
        if VS_shift is not 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
829
830
831
832
833
834
835
            VS_shift = translate_val(VS_shift, ['1/4', '1/2', '3/4'], [0.25, 0.5, 0.75])
        VS_in_out_cond = translate_val(parm_dict['VS_measure_in_field_loops'],
                                       ['out-of-field', 'in-field', 'in and out-of-field'], [0, 1, 2])
        VS_ACDC_cond = translate_val(parm_dict['VS_mode'],
                                     ['DC modulation mode', 'AC modulation mode with time reversal',
                                      'load user defined VS Wave from file', 'current mode'],
                                     [0, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
836
837
838
839
        self.expt_type = VS_ACDC_cond
        FORC_cycles = parm_dict['FORC_num_of_FORC_cycles']
        FORC_A1 = parm_dict['FORC_V_high1_[V]']
        FORC_A2 = parm_dict['FORC_V_high2_[V]']
Unknown's avatar
Unknown committed
840
        # FORC_repeats = parm_dict['# of FORC repeats']
Somnath, Suhas's avatar
Somnath, Suhas committed
841
842
        FORC_B1 = parm_dict['FORC_V_low1_[V]']
        FORC_B2 = parm_dict['FORC_V_low2_[V]']
Unknown's avatar
Unknown committed
843
844
845

        # % build vector of voltage spectroscopy values

Somnath, Suhas's avatar
Somnath, Suhas committed
846
        if VS_ACDC_cond == 0 or VS_ACDC_cond == 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
847
            VS_amp_vec_1 = np.arange(0, 1 + 1 / (VS_steps / 4), 1 / (VS_steps / 4))
Somnath, Suhas's avatar
Somnath, Suhas committed
848
849
            VS_amp_vec_2 = np.flipud(VS_amp_vec_1[:-1])
            VS_amp_vec_3 = -VS_amp_vec_1[1:]
Unknown's avatar
Unknown committed
850
851
            VS_amp_vec_4 = VS_amp_vec_1[1:-1] - 1
            vs_amp_vec = VS_amp * (np.hstack((VS_amp_vec_1, VS_amp_vec_2, VS_amp_vec_3, VS_amp_vec_4)))
Unknown's avatar
Unknown committed
852
            # apply phase shift to VS wave
Unknown's avatar
Unknown committed
853
            vs_amp_vec = np.roll(vs_amp_vec, int(np.floor(VS_steps / VS_fraction * VS_shift)))
Unknown's avatar
Unknown committed
854
            # cut VS waveform
Unknown's avatar
Unknown committed
855
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps * VS_fraction))]
Unknown's avatar
Unknown committed
856
            # repeat VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
857
            vs_amp_vec = np.tile(vs_amp_vec, int(VS_cycles))
Unknown's avatar
Unknown committed
858
859
            vs_amp_vec = vs_amp_vec + VS_offset

Somnath, Suhas's avatar
Somnath, Suhas committed
860
        elif VS_ACDC_cond == 2:  # AC voltage spectroscopy with time reversal
Unknown's avatar
Unknown committed
861
862
            vs_amp_vec = VS_amp * np.arange(1 / (VS_steps / 2 / VS_fraction), 1 + 1 / (VS_steps / 2 / VS_fraction),
                                            1 / (VS_steps / 2 / VS_fraction))
Somnath, Suhas's avatar
Somnath, Suhas committed
863
            vs_amp_vec = np.roll(vs_amp_vec,
Unknown's avatar
Unknown committed
864
865
                                 int(np.floor(VS_steps / VS_fraction * VS_shift)))  # apply phase shift to VS wave
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps * VS_fraction / 2))]  # cut VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
866
            vs_amp_vec = np.tile(vs_amp_vec, VS_cycles * 2)  # repeat VS waveform
Unknown's avatar
Unknown committed
867

Somnath, Suhas's avatar
Somnath, Suhas committed
868
        if FORC_cycles > 1:
Unknown's avatar
Unknown committed
869
870
871
872
873
874
875
            vs_amp_vec = vs_amp_vec / np.max(np.abs(vs_amp_vec))
            FORC_cycle_vec = np.arange(0, FORC_cycles + 1, FORC_cycles / (FORC_cycles - 1))
            FORC_A_vec = FORC_cycle_vec * (FORC_A2 - FORC_A1) / FORC_cycles + FORC_A1
            FORC_B_vec = FORC_cycle_vec * (FORC_B2 - FORC_B1) / FORC_cycles + FORC_B1
            FORC_amp_vec = (FORC_A_vec - FORC_B_vec) / 2
            FORC_off_vec = (FORC_A_vec + FORC_B_vec) / 2

876
            VS_amp_mat = np.tile(vs_amp_vec, [int(FORC_cycles), 1])
Somnath, Suhas's avatar
Somnath, Suhas committed
877
878
            FORC_amp_mat = np.tile(FORC_amp_vec, [len(vs_amp_vec), 1]).transpose()
            FORC_off_mat = np.tile(FORC_off_vec, [len(vs_amp_vec), 1]).transpose()
Unknown's avatar
Unknown committed
879
880
881
            VS_amp_mat = VS_amp_mat * FORC_amp_mat + FORC_off_mat
            vs_amp_vec = VS_amp_mat.reshape(int(FORC_cycles * VS_cycles * VS_fraction * VS_steps))

Somnath, Suhas's avatar
Somnath, Suhas committed
882
883
        # Build UDVS table:
        if VS_ACDC_cond is 0 or VS_ACDC_cond is 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
884

Somnath, Suhas's avatar
Somnath, Suhas committed
885
            if VS_ACDC_cond is 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
886
                UD_dc_vec = np.vstack((vs_amp_vec, np.zeros(len(vs_amp_vec))))
Somnath, Suhas's avatar
Somnath, Suhas committed
887
            if VS_ACDC_cond is 4:
Somnath, Suhas's avatar
Somnath, Suhas committed
888
                UD_dc_vec = np.vstack((vs_amp_vec, vs_amp_vec))
Unknown's avatar
Unknown committed
889

Somnath, Suhas's avatar
Somnath, Suhas committed
890
            UD_dc_vec = UD_dc_vec.transpose().reshape(UD_dc_vec.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
891
            num_VS_steps = UD_dc_vec.size
Unknown's avatar
Unknown committed
892

Somnath, Suhas's avatar
Somnath, Suhas committed
893
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'in-field', 'out-of-field']
Somnath, Suhas's avatar
Somnath, Suhas committed
894
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'V', 'V']
Somnath, Suhas's avatar
Somnath, Suhas committed
895
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Unknown's avatar
Unknown committed
896

Somnath, Suhas's avatar
Somnath, Suhas committed
897
898
            udvs_table[:, 0] = np.arange(0, num_VS_steps)  # Python base 0
            udvs_table[:, 1] = UD_dc_vec
Unknown's avatar
Unknown committed
899
900
901
902

            BE_IF_switch = np.abs(np.imag(np.exp(1j * np.pi / 2 * np.arange(1, num_VS_steps + 1))))
            BE_OF_switch = np.abs(np.real(np.exp(1j * np.pi / 2 * np.arange(1, num_VS_steps + 1))))

Somnath, Suhas's avatar
Somnath, Suhas committed
903
904
905
906
907
908
            if VS_in_out_cond is 0:  # out of field only
                udvs_table[:, 2] = BE_amp * BE_OF_switch
            elif VS_in_out_cond is 1:  # in field only
                udvs_table[:, 2] = BE_amp * BE_IF_switch
            elif VS_in_out_cond is 2:  # both in and out of field
                udvs_table[:, 2] = BE_amp * np.ones(num_VS_steps)
Unknown's avatar
Unknown committed
909

Somnath, Suhas's avatar
Somnath, Suhas committed
910
911
            udvs_table[:, 3] = np.ones(num_VS_steps)  # wave type
            udvs_table[:, 4] = np.ones(num_VS_steps) * BE_signal_type  # wave mod
Unknown's avatar
Unknown committed
912
913
914
915

            udvs_table[:, 5] = float('NaN') * np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN') * np.ones(num_VS_steps)

Somnath, Suhas's avatar
Somnath, Suhas committed
916
917
            udvs_table[BE_IF_switch == 1, 5] = udvs_table[BE_IF_switch == 1, 1]
            udvs_table[BE_OF_switch == 1, 6] = udvs_table[BE_IF_switch == 1, 1]
Unknown's avatar
Unknown committed
918

Somnath, Suhas's avatar
Somnath, Suhas committed
919
        elif VS_ACDC_cond is 2:  # AC voltage spectroscopy
Unknown's avatar
Unknown committed
920

Somnath, Suhas's avatar
Somnath, Suhas committed
921
            num_VS_steps = vs_amp_vec.size
Unknown's avatar
Unknown committed
922
923
            half = int(0.5 * num_VS_steps)

Somnath, Suhas's avatar
Somnath, Suhas committed
924
            if num_VS_steps is not half * 2:
925
                raise ValueError('Odd number of UDVS steps found. Exiting!')
Unknown's avatar
Unknown committed
926
927

            UD_dc_vec = VS_offset * np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
928
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'forward', 'reverse']
Somnath, Suhas's avatar
Somnath, Suhas committed
929
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'A', 'A']
Somnath, Suhas's avatar
Somnath, Suhas committed
930
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Unknown's avatar
Unknown committed
931
            udvs_table[:, 0] = np.arange(1, num_VS_steps + 1)
Somnath, Suhas's avatar
Somnath, Suhas committed
932
933
934
            udvs_table[:, 1] = UD_dc_vec
            udvs_table[:, 2] = vs_amp_vec
            udvs_table[:, 3] = np.ones(num_VS_steps)
Unknown's avatar
Unknown committed