be_odf.py 74.7 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
20
    createSpecVals, requires_conjugate, generate_bipolar_triangular_waveform, \
    infer_bipolar_triangular_fraction_phase, nf32
21
from pyUSID.io.translator import Translator
22
23
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
24
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
25
    write_reduced_anc_dsets, get_unit_values
26
from pyUSID.io.usi_data import USIDataset
27
from pyUSID.processing.comp_utils import get_available_memory
28

29
30
31
if sys.version_info.major == 3:
    unicode = str

32

Somnath, Suhas's avatar
Somnath, Suhas committed
33
34
35
36
37
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
38

Chris Smith's avatar
Chris Smith committed
39
40
41
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
42
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
43
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
44
45
46
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
47
        self._verbose = False
Chris Smith's avatar
Chris Smith committed
48

49
    @staticmethod
50
    def is_valid_file(data_path):
51
52
53
54
55
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
56
        data_path : str
57
58
59
60
            Path to raw data file

        Returns
        -------
61
62
63
64
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
65
        """
66
67
68
69
70
71
72
73
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
74
75
76
77
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
78
79
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
80
81

        # Check if the data is in the new or old format:
82
83
84
85
86
87
88
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
89
            # Though this translator could also read the files but the NDF Translator is more robust...
90
91
92
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
93
94

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
95

96
97
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
98
            return None
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
116
        else:
117
            return None
118

119
120
    def translate(self, file_path, show_plots=True, save_plots=True,
                  do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
135
136
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
137
138
139
140
141
142
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
ssomnath's avatar
ssomnath committed
143
144
        self._verbose = verbose

145
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
146
        (folder_path, basename) = path.split(file_path)
147
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
148

Somnath, Suhas's avatar
Somnath, Suhas committed
149
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
150
151
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
        if 'parm_txt' in path_dict.keys():
ssomnath's avatar
ssomnath committed
154
            if self._verbose:
155
                print('\treading parameters from text file')
ssomnath's avatar
ssomnath committed
156
157
            isBEPS, parm_dict = parmsToDict(path_dict['parm_txt'])

Somnath, Suhas's avatar
Somnath, Suhas committed
158
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
159
            if self._verbose:
160
                print('\treading parameters from old mat file')
ssomnath's avatar
ssomnath committed
161
            parm_dict = self._get_parms_from_old_mat(path_dict['old_mat_parms'], verbose=self._verbose)
162
163
164
165
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
166
        else:
167
            raise FileNotFoundError('No parameters file found! Cannot translate this dataset!')
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        # Initial text / mat files named some parameters differently
        if parm_dict['VS_mode'] == 'AC modulation mode':
            warn('Updating parameter "VS_mode" from invalid value'
                 ' of "AC modulation mode" to "AC modulation mode with '
                 'time reversal"')
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
        if parm_dict['BE_phase_content'] == 'chirp':
            warn('Updating parameter "BE_phase_content" from older value'
                 ' of "chirp" to "chirp-sinc hybrid"')
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        if parm_dict['BE_amplitude_[V]'] < 1E-2:
            new_val = 0.5151
            warn('Updating parameter "BE_amplitude_[V]" from invalid value'
                 ' of {} to {}'.format(parm_dict['BE_amplitude_[V]'],
                                       new_val))
            parm_dict['BE_amplitude_[V]'] = new_val
185
186
187
188
189
190
191
        if 'VS_offset_[V]' in parm_dict.keys():
            if parm_dict['VS_offset_[V]'] < 1E-2:
                new_val = 1
                warn('Updating parameter "VS_offset_[V]" from invalid value'
                     ' of {} to {}'.format(parm_dict['VS_offset_[V]'],
                                           new_val))
                parm_dict['VS_offset_[V]'] = new_val
192

ssomnath's avatar
ssomnath committed
193
        if self._verbose:
194
195
            keys = list(parm_dict.keys())
            keys.sort()
196
            print('\tExperiment parameters:')
197
198
199
200
            for key in keys:
                print('\t\t{} : {}'.format(key, parm_dict[key]))

            print('\n\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
201

Somnath, Suhas's avatar
Somnath, Suhas committed
202
203
204
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
205

Somnath, Suhas's avatar
Somnath, Suhas committed
206
207
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
208

Somnath, Suhas's avatar
Somnath, Suhas committed
209
            if not std_expt:
210
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
211
212
213

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
214
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
215
216
217
218
219
220
221
222
223
224
225
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
226

Somnath, Suhas's avatar
Somnath, Suhas committed
227
228
229
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
230

Somnath, Suhas's avatar
Somnath, Suhas committed
231
        # Check file sizes:
ssomnath's avatar
ssomnath committed
232
        if self._verbose:
233
234
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
235
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
236
237
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
238
239
240
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
241

Somnath, Suhas's avatar
Somnath, Suhas committed
242
        if real_size != imag_size:
ssomnath's avatar
ssomnath committed
243
244
245
246
            raise ValueError("Real and imaginary file sizes do not match!")

        if real_size == 0:
            raise ValueError('Real and imaginary files were empty')
Somnath, Suhas's avatar
Somnath, Suhas committed
247

248
        # Check here if a second channel for current is present
249
250
        # Look for the file containing the current data

ssomnath's avatar
ssomnath committed
251
        if self._verbose:
252
            print('\tLooking for secondary channels')
253
254
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
255
        current_data_exists = False
256
257
258
259
260
261
262
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
263
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
264
265
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
ssomnath's avatar
ssomnath committed
266
        if self._verbose:
267
            print('\tRows: {}, Cols: {}'.format(num_rows, num_cols))
Unknown's avatar
Unknown committed
268
269
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
270
        # Check for case where only a single pixel is missing.
271
272
273
274
        if num_pix == 1:
            check_bins = real_size / (num_pix * 4)
        else:
            check_bins = real_size / ((num_pix - 1) * 4)
Unknown's avatar
Unknown committed
275

ssomnath's avatar
ssomnath committed
276
        if self._verbose:
277
278
279
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
280
        if tot_bins % 1 and check_bins % 1:
281
282
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
283
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
284
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
285
286
287
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
288
289
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
290
291
292
293
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
294
        if 'parm_mat' in path_dict.keys():
ssomnath's avatar
ssomnath committed
295
            if self._verbose:
296
                print('\treading BE arrays from parameters text file')
297
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self._read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
298
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
299
            if self._verbose:
300
                print('\treading BE arrays from old mat text file')
301
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self._read_old_mat_be_vecs(path_dict['old_mat_parms'], verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
302
        else:
ssomnath's avatar
ssomnath committed
303
            if self._verbose:
304
                print('\tGenerating dummy BE arrays')
Unknown's avatar
Unknown committed
305
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
306
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
307
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
308
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
309

310
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
311
312
313
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
314

Somnath, Suhas's avatar
Somnath, Suhas committed
315
316
317
318
319
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
320

Somnath, Suhas's avatar
Somnath, Suhas committed
321
        self.FFT_BE_wave = bin_FFT
322

Somnath, Suhas's avatar
Somnath, Suhas committed
323
        if isBEPS:
ssomnath's avatar
ssomnath committed
324
            if self._verbose:
325
                print('\tBuilding UDVS table for BEPS')
ssomnath's avatar
ssomnath committed
326
            UDVS_labs, UDVS_units, UDVS_mat = self._build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
327

ssomnath's avatar
ssomnath committed
328
            if self._verbose:
329
                print('\tTrimming UDVS table to remove unused plot group columns')
330

331
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
332

333
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
334

335
            # Will assume that all excitation waveforms have same num of bins
Unknown's avatar
Unknown committed
336
337
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps
ssomnath's avatar
ssomnath committed
338
            if self._verbose:
339
340
                print('\t# UDVS steps: {}, # bins/step: {}'
                      ''.format(num_actual_udvs_steps, bins_per_step))
Unknown's avatar
Unknown committed
341

Somnath, Suhas's avatar
Somnath, Suhas committed
342
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
343
344
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
345
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
346

Somnath, Suhas's avatar
Somnath, Suhas committed
347
348
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
349

350
351
352
            if len(np.unique(UDVS_mat[:, 2])) == 0:
                raise ValueError('No non-zero rows in AC amplitude')

Unknown's avatar
Unknown committed
353
354
            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
355
356
357
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
358
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
359
                # UDVS step
360
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
361
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
362
            del stind, step_index
Unknown's avatar
Unknown committed
363

Somnath, Suhas's avatar
Somnath, Suhas committed
364
        else:  # BE Line
ssomnath's avatar
ssomnath committed
365
            if self._verbose:
366
                print('\tPreparing supporting variables since BE-Line')
Somnath, Suhas's avatar
Somnath, Suhas committed
367
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
368
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
369
370
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
371
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
372
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
373
374
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
375

Chris Smith's avatar
Chris Smith committed
376
377
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
378

379
        # legacy parmeters inserted for BEAM
Somnath, Suhas's avatar
Somnath, Suhas committed
380
381
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
382
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
383
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
384

ssomnath's avatar
ssomnath committed
385
        if self._verbose:
386
            print('\tPreparing UDVS slices for region references')
Somnath, Suhas's avatar
Somnath, Suhas committed
387
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
388
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
389
390
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
391
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
392
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
393
394

        if self.expt_type == 2:
ssomnath's avatar
ssomnath committed
395
            if self._verbose:
396
                print('\tExperiment type = 2. Doubling BE vectors')
Unknown's avatar
Unknown committed
397
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
398
399
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
400
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
401
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
402

Somnath, Suhas's avatar
Somnath, Suhas committed
403
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
404
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
ssomnath's avatar
ssomnath committed
405
        if self._verbose:
406
            print('\tCalculating spectroscopic values')
ssomnath's avatar
ssomnath committed
407
408
409
410
        ret_vals = createSpecVals(UDVS_mat, old_spec_inds, bin_freqs,
                                  exec_bin_vec, parm_dict, UDVS_labs,
                                  UDVS_units, verbose=verbose)
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = ret_vals
411

ssomnath's avatar
ssomnath committed
412
        if self._verbose:
413
            print('\t\tspec_vals_labs: {}'.format(spec_vals_labs))
414
415
416
            unit_vals = get_unit_values(spec_inds, spec_vals,
                                        all_dim_names=spec_vals_labs,
                                        is_spec=True, verbose=False)
417
418
419
420
            print('\tUnit spectroscopic values')
            for key, val in unit_vals.items():
                print('\t\t{} : length: {}, values:\n\t\t\t{}'.format(key, len(val), val))

421
422
423
424
        if spec_inds.shape[1] != tot_bins:
            raise ValueError('Second axis of spectroscopic indices: {} not '
                             'matching with second axis of the expected main '
                             'dataset: {}'.format(spec_inds.shape, tot_bins))
425

426
427
428
429
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
430

Somnath, Suhas's avatar
Somnath, Suhas committed
431
432
433
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
434
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
435

436
        if path.exists(h5_path):
ssomnath's avatar
ssomnath committed
437
            if self._verbose:
438
                print('\tRemoving existing / old translated file: ' + h5_path)
439
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
440

441
        # First create the file
ssomnath's avatar
ssomnath committed
442
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
443

444
        # Then write root level attributes
445
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
446
447
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
448
449
450
451
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
452

Somnath, Suhas's avatar
Somnath, Suhas committed
453
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
454
455
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
456
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
457
        global_parms['translator'] = 'ODF'
ssomnath's avatar
ssomnath committed
458
        if self._verbose:
459
            print('\tWriting attributes to HDF5 file root')
460
        write_simple_attrs(h5_f, global_parms)
461
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
462

463
464
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
465

466
        # Write attributes at the measurement group level
ssomnath's avatar
ssomnath committed
467
        if self._verbose:
468
            print('\twriting attributes to Measurement group')
469
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
470

471
472
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
473

474
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
475
476
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
477

478
        # Now the datasets!
ssomnath's avatar
ssomnath committed
479
        if self._verbose:
480
            print('\tCreating ancillary datasets')
Chris Smith's avatar
Chris Smith committed
481
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
482

483
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
ssomnath's avatar
ssomnath committed
484
485
486
        # TODO: Avoid using region references in USID
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=self._verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=False)
487

Chris Smith's avatar
Chris Smith committed
488
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
489

Chris Smith's avatar
Chris Smith committed
490
491
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
492

Chris Smith's avatar
Chris Smith committed
493
494
495
496
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
497

ssomnath's avatar
ssomnath committed
498
        if self._verbose:
499
500
501
502
            print('\tWriting Position datasets')

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)),
                    Dimension('Y', 'm', np.arange(num_rows))]
ssomnath's avatar
ssomnath committed
503
504
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=self._verbose)
        if self._verbose:
505
            print('\tPosition datasets of shape: {}'.format(h5_pos_ind.shape))
506

ssomnath's avatar
ssomnath committed
507
        if self._verbose:
508
            print('\tWriting Spectroscopic datasets of shape: {}'.format(spec_inds.shape))
509
510
511
        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
ssomnath's avatar
ssomnath committed
512
513
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=self._verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=False)
514
            write_simple_attrs(dset, spec_dim_dict)
515
516

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
ssomnath's avatar
ssomnath committed
517
        if self._verbose:
518
            print('\tWriting noise floor dataset')
Chris Smith's avatar
Chris Smith committed
519
520
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
521
522
523
524
525
526
527
528
529
530
531

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
ssomnath's avatar
ssomnath committed
532
        if self._verbose:
533
            print('\tHDF5 dataset will have chunks of size: {}'.format(BEPS_chunks))
534
            print('\tCreating empty main dataset of shape: ({}, {})'.format(num_pix, tot_bins))
535
536
537
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
ssomnath's avatar
ssomnath committed
538
                                         h5_spec_vals=h5_spec_vals, verbose=self._verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
539

ssomnath's avatar
ssomnath committed
540
        if self._verbose:
541
542
            print('\tReading data from binary data files into raw HDF5')
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
543
                        add_pix)
Unknown's avatar
Unknown committed
544

ssomnath's avatar
ssomnath committed
545
        if self._verbose:
546
            print('\tGenerating plot groups')
547
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
548
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
549
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
ssomnath's avatar
ssomnath committed
550
551
                           do_histogram=do_histogram, debug=self._verbose)
        if self._verbose:
552
            print('\tUpgrading to USIDataset')
553
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
554
555
556

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
ssomnath's avatar
ssomnath committed
557
            if self._verbose:
558
                print('\tReading data in secondary channels (current)')
559
            self._read_secondary_channel(h5_meas_group, aux_files)
560

ssomnath's avatar
ssomnath committed
561
        if self._verbose:
562
            print('\tClosing HDF5 file')
563
        h5_f.close()
Unknown's avatar
Unknown committed
564

Somnath, Suhas's avatar
Somnath, Suhas committed
565
        return h5_path
Chris Smith's avatar
Chris Smith committed
566

567
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
568
                   add_pix):
Chris Smith's avatar
Chris Smith committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
ssomnath's avatar
ssomnath committed
595
            if self._verbose:
596
                print('\t\tReading all raw data for BE-Line in one shot')
597
598
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
599
                                  parm_dict['num_udvs_steps'])
600
601
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
Chris Smith's avatar
Chris Smith committed
602
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
ssomnath's avatar
ssomnath committed
603
            if self._verbose:
604
605
606
                print('\t\tReading all raw BEPS (out-of-field) data at once')
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
607
                                  parm_dict['num_udvs_steps'])
608
609
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'in-field':
Chris Smith's avatar
Chris Smith committed
610
            # Do this for in-field only
ssomnath's avatar
ssomnath committed
611
            if self._verbose:
612
613
614
                print('\t\tReading all raw BEPS (in-field only) data at once')
            self._quick_read_data(path_dict['write_real'],
                                  path_dict['write_imag'],
ssomnath's avatar
ssomnath committed
615
                                  parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
616
617
        else:
            # Large BEPS datasets OR those with in-and-out of field
ssomnath's avatar
ssomnath committed
618
            if self._verbose:
619
620
621
622
623
                print('\t\tReading all raw data for in-and-out-of-field OR '
                      'very large file one pixel at a time')
            self._read_beps_data(path_dict, UDVS_mat.shape[0],
                                 parm_dict['VS_measure_in_field_loops'],
                                 add_pix)
624
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
625

626
    def _read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
645

Somnath, Suhas's avatar
Somnath, Suhas committed
646
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
647
648
649
650

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
651
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
652
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
653
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
654
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
655
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
656
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
657
658
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
659
            if 0.5 * udvs_steps % 1:
660
661
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
662
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
663
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
664
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
665
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
666
667
668
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
669
            if step_size % 1:
670
671
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
672
            step_size = int(step_size)
673

674
675
        rand_spectra = self._get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra)
676
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
677

Somnath, Suhas's avatar
Somnath, Suhas committed
678
679
680
681
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
682
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
683
684
685
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
686
687
688
689
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
690
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
691
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
692
693
694
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
695
696
697
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
698
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
699

Somnath, Suhas's avatar
Somnath, Suhas committed
700
701
702
703
704
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
705

Somnath, Suhas's avatar
Somnath, Suhas committed
706
707
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
708
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
709
710
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
711
712
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
713
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
714
715
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
716
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
717
718
719

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
720
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
721
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
722

Somnath, Suhas's avatar
Somnath, Suhas committed
723
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
724
725
726
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
727
        print('---- Finished reading files -----')
728

ssomnath's avatar
ssomnath committed
729
    def _quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
730
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
731
732
733
734
735
736
737
738
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
739
740
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
741
        """
742
743
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0],
                             self.h5_raw.shape[1] * 4)
744
745

        step_size = self.h5_raw.shape[1] / udvs_steps
746
747
748
749
        rand_spectra = self._get_random_spectra([parser],
                                                self.h5_raw.shape[0],
                                                udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra,
ssomnath's avatar
ssomnath committed
750
751
                                                verbose=self._verbose)
        if self._verbose:
752
            print('\t\t\tChecking if conjugate is required')
753
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
754
        raw_vec = parser.read_all_data()
755
        if take_conjugate:
ssomnath's avatar
ssomnath committed
756
            if self._verbose:
757
                print('\t'*4 + 'Taking conjugate for positive quality factors')
758
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
759

Rama Vasudevan's avatar
Rama Vasudevan committed
760
761
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
762
            warn('Warning! Raw data length {} is not matching placeholder length {}. '
Rama Vasudevan's avatar
Rama Vasudevan committed
763
764
765
766
767
768
769
770
771
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Somnath, Suhas's avatar
Somnath, Suhas committed
772
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
773
774
775
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
776
        self.h5_raw[:, :] = np.complex64(raw_mat)
777
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
778

Unknown's avatar
Unknown committed
779
780
        print('---- Finished reading files -----')

781
782
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
783
784
785
786
787
788
789
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
790
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
791
792
793
794
795
796
797
798
799
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
800
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
801

802
803
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
804
805
806
807
808
809
810
811
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
812

Somnath, Suhas's avatar
Somnath, Suhas committed
813
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
814
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
815
816
817
818
819
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
820
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
821
822
823
824
825
826
827
828
829
830
831
832
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
833
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
834

ssomnath's avatar
ssomnath committed
835
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
836
837
838
839
840
841
842
843
844
845
846
847
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
ssomnath's avatar
ssomnath committed
848
        if self._verbose:
849
            print('\t---------- Reading Secondary Channel  ----------')
850
        if isinstance(aux_file_path, (list, tuple)):
851
852
853
854
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

855
        is_in_out_field = 'Field' in self.h5_raw.spec_dim_labels
856

857
858
859
860
861
862
863
864
865
        if not is_in_out_field and len(aux_file_paths) > 1:
            # TODO: Find a better way to handle this
            warn('\t\tField was not varied but found more than one file for '
                 'secondary channel: {}.\n\t\tResults will be overwritten'
                 ''.format([path.split(item)[-1] for item in aux_file_paths]))
        elif is_in_out_field and len(aux_file_paths) == 1:
            warn('\t\tField was varied but only one data file for secondary'
                 'channel was found. Half the data will be zeros')