plot_utils.py 42.6 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
merged    
Chris Smith committed
7
from __future__ import division # int/int = float
8
9

from warnings import warn
10
import os
Chris Smith's avatar
merged    
Chris Smith committed
11
import h5py
12
import scipy
13
14
15
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from ..analysis.utils.be_loop import loopFitFunction


def plotLoopFitNGuess(Vdc, ds_proj_loops, ds_guess, ds_fit, title=''):
    '''
    Plots the loop guess, fit, source projected loops for a single cycle

    Parameters
    ----------
    Vdc - 1D float numpy array
        DC offset vector (unshifted)
    ds_proj_loops - 2D numpy array
        Projected loops arranged as [position, Vdc]
    ds_guess - 1D compound numpy array
        Loop guesses arranged as [position]
    ds_fit - 1D compound numpy array
        Loop fits arranged as [position]
    title - (Optional) String / unicode
        Title for the figure

    Returns
    ----------
    fig - matplotlib.pyplot.figure object
        Figure handle
    axes - 2D array of matplotlib.pyplot.axis handles
        handles to axes in the 2d figure
    '''
    shift_ind = int(-1 * len(Vdc) / 4)
    Vdc_shifted = np.roll(Vdc, shift_ind)

    num_plots = np.min([5, int(np.sqrt(ds_proj_loops.shape[0]))])
    fig, axes = plt.subplots(nrows=num_plots, ncols=num_plots, figsize=(18, 18))
    positions = np.linspace(0, ds_proj_loops.shape[0] - 1, num_plots ** 2, dtype=np.int)
    for ax, pos in zip(axes.flat, positions):
        ax.plot(Vdc, ds_proj_loops[pos, :], 'k', label='Raw')
        ax.plot(Vdc_shifted, loopFitFunction(Vdc_shifted, np.array(list(ds_guess[pos]))), 'g', label='guess')
        ax.plot(Vdc_shifted, loopFitFunction(Vdc_shifted, np.array(list(ds_fit[pos]))), 'r--', label='Fit')
        ax.set_xlabel('V_DC (V)')
        ax.set_ylabel('PR (a.u.)')
        ax.set_title('Loop ' + str(pos))
    ax.legend()
    fig.suptitle(title)
    fig.tight_layout()

    return fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

###############################################################################

def rainbowPlot(ax, ao_vec, ai_vec, num_steps=32):
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

    Inputs:
    ---------
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
    """
    pts_per_step = int(len(ai_vec) / num_steps)
    for step in xrange(num_steps - 1):
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
                color=plt.cm.jet(255 * step / num_steps))
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
            color=plt.cm.jet(255 * num_steps / num_steps))
    """
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.jet)
    fig.colorbar(CS3)"""


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def plot_map(axis, data, stdevs=2, show_colorbar=False, **kwargs):
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
    show_colorbar : Boolean (Optional. Default = True)
        Whether or not to show the color bar
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
    if show_colorbar:
        pcol0 = axis.pcolor(data,
                            vmin=data_mean - stdevs * data_std, vmax=data_mean + stdevs * data_std, **kwargs)
        axis.figure.colorbar(pcol0, ax=axis)
        axis.axis('tight')
    else:
        axis.imshow(data, interpolation='none',
                    vmin=data_mean - stdevs * data_std, vmax=data_mean + stdevs * data_std, **kwargs)
    axis.set_aspect('auto')


Somnath, Suhas's avatar
Somnath, Suhas committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
###############################################################################

def plotLoops(excit_wfm, h5_loops, h5_pos=None, central_resp_size=None,
              evenly_spaced=True, plots_on_side=5, rainbow_plot=True,
              x_label='', y_label='', subtitles='Eigenvector', title=None):
    """
    Plots loops from up to 25 evenly spaced positions

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
    h5_loops : float HDF5 dataset reference or 2D numpy array
        Dataset containing data arranged as (pixel, time)
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
    rainbow_plot : (optional) Boolean
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """

    plots_on_side = min(abs(plots_on_side), 5)
    num_pos = h5_loops.shape[0]
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, figsize=(12, 12))
    axes_lin = axes.flat

    cent_ind = int(0.5 * h5_loops.shape[1])
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
        r_resp_ind = h5_loops.shape[1]

    for count, posn in enumerate(chosen_pos):
        if rainbow_plot:
            rainbowPlot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], h5_loops[posn, l_resp_ind:r_resp_ind])
        else:
            axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], h5_loops[posn, l_resp_ind:r_resp_ind])

        if type(h5_pos) != type(None):
            # print 'Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0])
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
206
207
208


def plotSHOMaps(sho_maps, map_names, stdevs=2, title='', save_path=None): 
Somnath, Suhas's avatar
Somnath, Suhas committed
209
    """
Chris Smith's avatar
merged    
Chris Smith committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    Plots the SHO quantity maps for a single UDVS step
    
    Parameters
    ------------
    sho_maps : List of 2D numpy arrays
        Each SHO map is structured as [row, col]
    map_names: List of strings
        Titles for each of the SHO maps
    stdevs : (Optional) Unsigned int
        Number of standard deviations from the mean to be used to clip the color axis
    title : (Optional) String
        Title for the entire figure. Group name is most appropriate here
    save_path : (Optional) String
        Absolute path to write the figure to
        
    Returns
    ----------
    None
Somnath, Suhas's avatar
Somnath, Suhas committed
228
    """
Chris Smith's avatar
merged    
Chris Smith committed
229
230
231
    fig,axes=plt.subplots(ncols=3, nrows=2, sharex=True, figsize=(15, 10)) 
    
    for index, ax_hand, data_mat, qty_name in zip(range(len(map_names)), axes.flat, sho_maps, map_names):
232
233
        amp_mean = np.mean(data_mat)
        amp_std = np.std(data_mat)          
Chris Smith's avatar
merged    
Chris Smith committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        
        pcol0 = ax_hand.pcolor(data_mat, vmin=amp_mean-stdevs*amp_std, 
                               vmax=amp_mean+stdevs*amp_std) 
        ax_hand.axis('tight') 
        fig.colorbar(pcol0, ax=ax_hand) 
        ax_hand.set_title(qty_name) 
         
    plt.setp([ax.get_xticklabels() for ax in axes[0,:]], visible=True) 
    axes[1,2].axis('off') 
    
    plt.tight_layout()   
    if save_path:
        fig.savefig(save_path, format='png', dpi=300)


def plotVSsnapshots(resp_mat, title='', stdevs=2, save_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
250
    """
Chris Smith's avatar
merged    
Chris Smith committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    Plots the spatial distribution of the response at evenly spaced UDVS steps
    
    Parameters
    -------------
    resp_mat : 3D numpy array
        SHO responses arranged as [udvs_step, rows, cols]
    title : (Optional) String
        Super title for the plots - Preferably the group name
    stdevs : (Optional) string
        Number of standard deviations from the mean to be used to clip the color axis
    save_path : (Optional) String
        Absolute path to write the figure to
        
    Returns
    ----------
    None
Somnath, Suhas's avatar
Somnath, Suhas committed
267
    """
Chris Smith's avatar
merged    
Chris Smith committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    
    num_udvs = resp_mat.shape[2]
    if num_udvs >= 9:
        tot_plots = 9
    elif num_udvs >= 4:
        tot_plots = 4
    else:
        tot_plots = 1
    delta_pos = int(np.ceil(num_udvs/tot_plots)) 
    
    fig, axes = plt.subplots(nrows=int(tot_plots**0.5),ncols=int(tot_plots**0.5),
                             sharex=True, sharey=True, figsize=(12, 12)) 
    if tot_plots > 1:    
        axes_lin = axes.reshape(tot_plots)
    else:
        axes_lin = axes
    
    for count, posn in enumerate(xrange(0,num_udvs, delta_pos)):
        
        snapshot = np.squeeze(resp_mat[:,:,posn])
288
289
        amp_mean = np.mean(snapshot) 
        amp_std = np.std(snapshot)
Chris Smith's avatar
merged    
Chris Smith committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        ndims = len(snapshot.shape)
        if ndims == 2:
            axes_lin[count].imshow(snapshot, vmin=amp_mean-stdevs*amp_std, vmax=amp_mean+stdevs*amp_std)
        elif ndims == 1:
            np.clip(snapshot,amp_mean-stdevs*amp_std,amp_mean+stdevs*amp_std,snapshot)
            axes_lin[count].plot(snapshot)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].set_title('UDVS Step #' + str(posn))
    
    fig.suptitle(title)
    plt.tight_layout()
    if save_path:
        fig.savefig(save_path, format='png', dpi=300)

Somnath, Suhas's avatar
Somnath, Suhas committed
305
306
307

def plotSpectrograms(eigenvectors, num_comps=4, title='Eigenvectors', xlabel='Step', stdevs=2,
                     show_colorbar=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
308
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
    eigenvectors : 3D numpy complex matrices
        Eigenvectors rearranged as - [row, col, component]


    xaxis : 1D real numpy array
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
331
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
332
333
334
335
336
337
338
339
340
341
342
    import matplotlib.pyplot as plt
    fig_h, fig_w = (4, 4 + show_colorbar * 1.00)
    p_rows = int(np.ceil(np.sqrt(num_comps)))
    p_cols = int(np.floor(num_comps / p_rows))
    fig201, axes201 = plt.subplots(p_rows, p_cols, figsize=(p_cols * fig_w, p_rows * fig_h))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

    for index in xrange(num_comps):
        cur_map = np.transpose(eigenvectors[index, :, :])
        ax = axes201.flat[index]
343
344
        mean = np.mean(cur_map)
        std = np.std(cur_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        ax.imshow(cur_map, cmap='jet',
                  vmin=mean - stdevs * std,
                  vmax=mean + stdevs * std)
        ax.set_title('Eigenvector: %d' % (index + 1))
        ax.set_aspect('auto')
        ax.set_xlabel(xlabel)
        ax.axis('tight')

    return fig201, axes201


###############################################################################

def plotBEspectrograms(eigenvectors, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
359
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
    eigenvectors : 3D numpy complex matrices
        Eigenvectors rearranged as - [row, col, component]


    xaxis : 1D real numpy array
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
382
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
383
384
385
386
387
388
389
390
391
392
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

    for index in xrange(num_comps):
        cur_map = np.transpose(eigenvectors[index, :, :])
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
393
394
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
395
396
397
398
399
400
401
402
403
404
405
406
407
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

def plotBEeigenvectors(eigenvectors, num_comps=4, xlabel=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
408
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
    eigenvectors : 3D numpy complex matrices
        Eigenvectors rearranged as - [row, col, component]


    xaxis : 1D real numpy array
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
431
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title("Eigenvectors")

    for index in xrange(num_comps):
        cur_map = eigenvectors[index, :]
        #         axes = [axes201.flat[index], axes201.flat[index+num_comps], axes201.flat[index+2*num_comps], axes201.flat[index+3*num_comps]]
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
            ax.plot(func(cur_map))
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
        ax.set_xlabel(xlabel)
    fig201.tight_layout()

    return fig201, axes201


###############################################################################

def plotBELoops(xaxis, xlabel, amp_mat, phase_mat, num_comps, title=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
455
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    Plots the provided loops from the SHO. Replace / merge with function in BESHOUtils

    Parameters:
    -------------
    xaxis : 1D real numpy array
        The vector to plot against
    xlabel : string
        Label for x axis
    amp_mat : 2D real numpy array
        Amplitude matrix arranged as [points, component]
    phase_mat : 2D real numpy array
        Phase matrix arranged as [points, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
476
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 6))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

    for index in xrange(num_comps):
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        resp_vecs = [amp_mat[index, :], phase_mat[index, :]]
        resp_titles = ['Amplitude', 'Phase']

        for ax, resp, titl in zip(axes, resp_vecs, resp_titles):
            ax.plot(xaxis, resp)
            ax.set_title('%s %d' % (titl, index + 1))
            ax.set_aspect('auto')
            ax.set_xlabel(xlabel)

    fig201.tight_layout()
    return fig201, axes201


###############################################################################

def plotScree(S, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
499
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
500
501
502
503
504
505
506
507
508
509
    Plots the S or scree

    Parameters:
    -------------
    S : 1D real numpy array
        The S vector from SVD

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
510
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
    axes203.loglog(np.arange(len(S)) + 1, S, 'b', marker='*')
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
    axes203.set_xlim(left=1, right=len(S))
    axes203.set_ylim(bottom=np.min(S), top=np.max(S))
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


###############################################################################

526
def plotLoadingMaps(loadings, num_comps=4, stdevs=2, show_colorbar=True, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
527
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    Plots the provided loading maps

    Parameters:
    -------------
    loadings : 3D real numpy array
        structured as [rows, cols, component]
    num_comps : int
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
    colormap : string or object from matplotlib.colors (Optional. Default = jet or rainbow)
        Colormap for the plots
    show_colorbar : Boolean (Optional. Default = True)
        Whether or not to show the color bar

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
546
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
547
548
549
550
551
552
553
554
    fig_h, fig_w = (4, 4 + show_colorbar * 1.00)
    p_rows = int(np.ceil(np.sqrt(num_comps)))
    p_cols = int(np.floor(num_comps / p_rows))
    fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
    fig202.subplots_adjust(hspace=0.4, wspace=0.4)
    fig202.canvas.set_window_title("Loading Maps")

    for index in xrange(num_comps):
555
        plot_map(axes202.flat[index], loadings[:, :, index], stdevs=stdevs, show_colorbar=show_colorbar, **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
556
557
558
559
560
561
562
563
        axes202.flat[index].set_title('Loading %d' % (index + 1))
    fig202.tight_layout()

    return fig202, axes202


###############################################################################

Chris Smith's avatar
Chris Smith committed
564
565
def plotClusterResults(label_mat, mean_response, spec_val=None, cmap=plt.cm.jet,
                       spec_label='Spectroscopic Value', resp_label='Response'):
Somnath, Suhas's avatar
Somnath, Suhas committed
566
    """
Chris Smith's avatar
Chris Smith committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    Plot the cluster labels and mean response for each cluster

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
    mean_response : 2D ndarray or h5py.Dataset
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
    spec_val :  1D ndarray or h5py.Dataset of floats, optional
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
596
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
597
598
599
600
601
602
603
604

    def __plotCentroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
        num_clusters = centroids.shape[0]
        for clust in xrange(num_clusters):
            ax.plot(spec_val, centroids[clust],
                    label='Cluster {}'.format(clust),
                    color=cmap(int(255 * clust / (num_clusters - 1))))
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
605
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
606
607
608
609
610
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
611
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
612

Chris Smith's avatar
Chris Smith committed
613
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
614
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
615
616
617
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
618
619
        axes = [ax_map, ax_amp, ax_phase]

Chris Smith's avatar
Chris Smith committed
620
621
622
        __plotCentroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
        __plotCentroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
623
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
624
625
626
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()


Somnath, Suhas's avatar
Somnath, Suhas committed
627
    else:
Chris Smith's avatar
Chris Smith committed
628
629
630
631
632
633
634
635
636
637
638
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
        __plotCentroids(mean_response, ax_resp, spec_val, spec_label,
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
639
640

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
641
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
642
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
643
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
644
645
646
647
648
649
650
651
652
653
654
655
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
    im = ax_map.imshow(label_mat, interpolation='none')
    divider = make_axes_locatable(ax_map)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
    fig.colorbar(im, cax=cax)
    ax_map.axis('tight')
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
656
657
    fig.suptitle('Cluster results')
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
658
659
660
661
662
663
664
665

    return fig, axes


###############################################################################

def plotKMeansClusters(label_mat, cluster_centroids,
                       num_cluster=4):
Somnath, Suhas's avatar
Somnath, Suhas committed
666
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    Plots the provided label mat and centroids
    from KMeans clustering

    Parameters:
    -------------
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
    num_cluster : int
                Number of centroids to plot

    Returns:
    ---------
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
682
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

    if num_cluster < 5:

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

        # Plot results
    for ax, index in zip(axes_handles[0:num_cluster + 1], np.arange(num_cluster + 1)):
        if index == 0:
            im = ax.imshow(label_mat, interpolation='none')
            ax.set_title('K-means Cluster Map')
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
            plt.colorbar(im, cax=cax)
        else:
            #             ax.plot(Vdc_vec, cluster_centroids[index-1,:], 'g-')
            ax.plot(cluster_centroids[index - 1, :], 'g-')
            ax.set_xlabel('Voltage (V)')
            ax.set_ylabel('Current (arb.)')
            ax.set_title('K-means Centroid: %d' % (index))

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)

    return fig501


###############################################################################

def plotClusterDendrograms(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                           sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
737
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
738
739
740
741
742
743
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
744
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
745
    e_vals: 3D real numpy array of eigenvalues
746
        structured as [component, rows, cols]
Somnath, Suhas's avatar
Somnath, Suhas committed
747
    num_comps : int
748
749
750
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
751
    mode: str, optional
752
753
754
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
755
    last: int, optional - should be provided when using "Truncated"
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
770
771
772

    Returns
    ---------
773
774
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
775
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
        print 'Creating full dendrogram from clusters'
        mode = None
    elif mode == 'Truncated':
        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
        mode = 'lastp'
        show_contracted = True
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
    for k1 in xrange(num_cluster):
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
        for k2 in xrange(len(i_x)):
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)


        # Get the distrance between cluster means
810
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
811
812

    # get hierachical pairings of clusters
813
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
814
815
816
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
817
818
819
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


def plot1DSpectrum(data_vec, freq, title, figure_path=None):
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
        #         print '1D:',data_vec.shape, freq.shape
        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
        return
    freq = freq * 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    # ax[0].set_xlabel('Frequency (kHz)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
    return (fig, ax)


###############################################################################

def plot2DSpectrogram(mean_spectrogram, freq, title, figure_path=None):
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
        #  print '2D:',mean_spectrogram.shape, freq.shape
        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
        return
    freq = freq * 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
    # print mean_spectrogram.shape
    # print freq.shape
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
    return (fig, ax)


###############################################################################

def plotHistgrams(p_hist, p_hbins, title, figure_path=None):
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    return fig


def plotSHOLoops(dc_vec, resp_mat, x_label='', y_label='', title=None, save_path=None):
    '''
    Plots BE loops from up to 9 positions (evenly separated)

    Parameters
    -----------
    dc_vec : 1D numpy array
        X axis - DC offset / AC amplitude
    resp_mat : real 2D numpy array
        containing quantity such as amplitude or phase organized as
        [position, spectroscopic index]
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String