plot_utils.py 45.3 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
merged    
Chris Smith committed
7
from __future__ import division # int/int = float
8
from warnings import warn
9
import os
Chris Smith's avatar
merged    
Chris Smith committed
10
import h5py
11
import scipy
12
import matplotlib.pyplot as plt
13
from matplotlib.colors import LinearSegmentedColormap
14
from mpl_toolkits.axes_grid1 import ImageGrid
15
import numpy as np
16
from ..analysis.utils.be_loop import loop_fit_function
17
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
        color map object that can be used in place of plt.cm.jet
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
80

Chris Smith's avatar
Chris Smith committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def cmap_hot_desaturated():
    hot_desaturated = [(1, (255, 76, 76, 255)),
                       (0.857, (107, 0, 0, 255)),
                       (0.714, (255, 96, 0, 255)),
                       (0.571, (255, 255, 0, 255)),
                       (0.429, (0, 127, 0, 255)),
                       (0.285, (0, 255, 255, 255)),
                       (0.143, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    cdict = {'red': tuple([(dist, colors[0]/255.0, colors[0]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'green': tuple([(dist, colors[1]/255.0, colors[1]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'blue': tuple([(dist, colors[2]/255.0, colors[2]/255.0) for (dist, colors) in hot_desaturated][::-1])}

    return LinearSegmentedColormap('hot_desaturated', cdict)



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def discrete_cmap(num_bins, base_cmap=plt.cm.jet):
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Discretized color map

    Credits
    -------
    Jake VanderPlas
    License: BSD-style
    """

    base = plt.cm.get_cmap(base_cmap)
    color_list = base(np.linspace(0, 1, num_bins))
    cmap_name = base.name + str(num_bins)
    return base.from_list(cmap_name, color_list, num_bins)

126
127
128

def plot_loop_guess_fit(vdc, ds_proj_loops, ds_guess, ds_fit, title=''):
    """
129
130
131
132
    Plots the loop guess, fit, source projected loops for a single cycle

    Parameters
    ----------
133
    vdc - 1D float numpy array
134
135
        DC offset vector (unshifted)
    ds_proj_loops - 2D numpy array
136
        Projected loops arranged as [position, vdc]
137
138
139
140
141
142
143
144
145
146
147
148
149
    ds_guess - 1D compound numpy array
        Loop guesses arranged as [position]
    ds_fit - 1D compound numpy array
        Loop fits arranged as [position]
    title - (Optional) String / unicode
        Title for the figure

    Returns
    ----------
    fig - matplotlib.pyplot.figure object
        Figure handle
    axes - 2D array of matplotlib.pyplot.axis handles
        handles to axes in the 2d figure
150
151
152
    """
    shift_ind = int(-1 * len(vdc) / 4)
    vdc_shifted = np.roll(vdc, shift_ind)
153
154
155
156
157

    num_plots = np.min([5, int(np.sqrt(ds_proj_loops.shape[0]))])
    fig, axes = plt.subplots(nrows=num_plots, ncols=num_plots, figsize=(18, 18))
    positions = np.linspace(0, ds_proj_loops.shape[0] - 1, num_plots ** 2, dtype=np.int)
    for ax, pos in zip(axes.flat, positions):
158
159
160
        ax.plot(vdc, ds_proj_loops[pos, :], 'k', label='Raw')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_guess[pos]))), 'g', label='guess')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_fit[pos]))), 'r--', label='Fit')
161
162
163
164
165
166
167
168
        ax.set_xlabel('V_DC (V)')
        ax.set_ylabel('PR (a.u.)')
        ax.set_title('Loop ' + str(pos))
    ax.legend()
    fig.suptitle(title)
    fig.tight_layout()

    return fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
169
170
171

###############################################################################

172

173
def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.jet, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
174
175
176
177
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

178
179
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
180
181
182
183
184
185
186
187
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
188
189
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
190
191
    """
    pts_per_step = int(len(ai_vec) / num_steps)
192
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
193
194
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
195
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
196
197
198
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
199
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
200
201
202
203
204
    """
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.jet)
    fig.colorbar(CS3)"""


205
206
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='', cmap=plt.cm.jet,
                     **kwargs):
207
208
209
210
211
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
212
    axis : axis handle
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

236
    for line_ind in range(num_lines):
237
238
239
        axis.plot(x_axis, line_family[line_ind],
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
240
241


242
def plot_map(axis, data, stdevs=2, **kwargs):
243
244
245
246
247
248
249
250
251
252
253
254
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
255

256
257
258
259
260
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
261
262
263
264
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
                     **kwargs)
265
266
    axis.set_aspect('auto')

267
    return im
268

269

270
271
272
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True, plots_on_side=5,
                       x_label='', y_label='', subtitles='Position', title='', central_resp_size=None,
                       use_rainbow_plots=False, h5_pos=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
273
    """
274
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
275
276
277
278
279

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
280
281
282
283
284
285
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
286
287
288
289
290
291
292
293
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
294
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    if type(datasets) is not list:
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
        datasets = list(datasets)
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return


    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
351
352

    plots_on_side = min(abs(plots_on_side), 5)
353

Somnath, Suhas's avatar
Somnath, Suhas committed
354
355
356
357
358
359
360
361
362
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, figsize=(12, 12))
    axes_lin = axes.flat

363
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
364
365
366
367
368
369
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
370
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
371
372

    for count, posn in enumerate(chosen_pos):
373
374
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
375
        else:
376
377
378
            for dataset, col_val in zip(datasets, line_colors):
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind], color=col_val)
        if h5_pos is not None:
Somnath, Suhas's avatar
Somnath, Suhas committed
379
380
381
382
383
384
385
386
387
388
389
390
            # print 'Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0])
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
391
392
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
393
394
395
396
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
397

Somnath, Suhas's avatar
Somnath, Suhas committed
398
399
###############################################################################

400
401

def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
402
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
403
404
405
406
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
407
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
408
409
410
411
412
413
414
415
416
417
418
419
420
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
421
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
422
423
424
425
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

426
    for index in range(num_comps):
427
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
428
429
430
431
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
432
433
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
434
435
436
437
438
439
440
441
442
443
444
445
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

446
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
447
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
448
449
450
451
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
452
453
454
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
455
456
457
458
459
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
460
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
461
462
463
464
465
466
467
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
468
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
469
470
471
472
473
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
474
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
475

476
    for index in range(num_comps):
477
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
478
479
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
480
481
482
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
483
484
485
486
487
488
489
    fig201.tight_layout()

    return fig201, axes201

###############################################################################


490
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
491
    """
492
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
493
494
495

    Parameters:
    -------------
496
497
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
498
499
500
501

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
502
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
503
504
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
505
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
506
507
508
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
509
510
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
511
512
513
514
515
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


516
517
518
# ###############################################################################


519
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False,
Somnath, Suhas's avatar
Somnath, Suhas committed
520
                   title='Component', heading='Map Stack', **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
521
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
522
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
523
524
525

    Parameters:
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
526
    map_stack : 3D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
527
        structured as [rows, cols, component]
528
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
529
530
531
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
532
    color_bar_mode : String, Optional
533
534
535
536
537
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
Somnath, Suhas's avatar
Somnath, Suhas committed
538
539
540
541

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
542
    """
543
544
545
546
547
548
549
550
551
    num_comps = abs(num_comps)
    num_comps = min(num_comps, map_stack.shape[-1])


    if evenly_spaced:
        chosen_pos = np.linspace(0, map_stack.shape[-1] - 1, num_comps, dtype=int)
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

552
553
554
555
556
557
558
559
560
561
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
            title = title + ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
    else:
        if not isinstance(title, str):
            title = 'Component'
562
        title = [title + ' ' + str(x) for x in chosen_pos]
563

564
    fig_h, fig_w = (4, 4)
565
566
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
567
568
    if p_rows*p_cols < num_comps:
        p_cols += 1
569
    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h))
570
571
572
573
574
575
576
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
                        cbar_pad='1%',
                        cbar_size='5%',
                        axes_pad=(0.1*fig_w, 0.07*fig_h))
    # fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
    # fig202.subplots_adjust(hspace=0.4, wspace=0.4)
Somnath, Suhas's avatar
Somnath, Suhas committed
577
578
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
579

580
581
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
582
                      map_stack[:, :, index],
583
584
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
585
        if color_bar_mode is 'each':
586
            axes202.cbar_axes[count].colorbar(im)
587
588
589

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
590
591
592

    return fig202, axes202

593

594
595
def plot_cluster_h5_group(h5_group, y_spec_label):
    # TODO: The label and units for the main dataset itself are missing in most cases! - ie. I don't know that the data is 'Current' and 'nA'
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)

630
631
632
    plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                  spec_label=x_spec_label, resp_label=y_spec_label,
                                  pos_labels=pos_labels, pos_ticks=pos_ticks)
Somnath, Suhas's avatar
Somnath, Suhas committed
633
634

###############################################################################
635
636


637
638
639
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=plt.cm.jet,
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
640
    """
641
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
642
643
644
645
646

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
647
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
648
649
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
650
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
651
652
653
654
655
656
657
658
659
660
661
662
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
663
664
665
666
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
667
668
669
670
671
672
673

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
674
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
675

676
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
677
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
678
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
679
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
680
681
682
683
684
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
685
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
686

Chris Smith's avatar
Chris Smith committed
687
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
688
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
689
690
691
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
692
693
        axes = [ax_map, ax_amp, ax_phase]

694
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
695
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
696
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
697
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
698
699
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
700
    else:
Chris Smith's avatar
Chris Smith committed
701
702
703
704
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
705
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
706
707
708
709
710
711
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
712
713

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
714
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
715
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
716
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
717
718
719
720
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
721

Chris Smith's avatar
Chris Smith committed
722
    # im = ax_map.imshow(label_mat, interpolation='none')
723
724
725
726
727
728
729
730
731
732
733
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

734
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
735
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
736
737
738
739
740
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    ax_map.axis('tight')"""
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
741
    ax_map.axis('tight')
742
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
743
744
745
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
746
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
747
748
749
750
751

    return fig, axes

###############################################################################

752

753
754
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4,
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
755
    """
756
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
757

758
759
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
760
761
762
763
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
764
765
    max_centroids : unsigned int
                    Number of centroids to plot
766
767
768
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
769
770
771
772
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
773

774
775
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
776
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
777
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
778

779
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

808
    # First plot the labels map:
809
810
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
                                                      base_cmap=plt.cm.jet))
811
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
812
813
    fax1.axis('tight')
    fax1.set_aspect('auto')
814
    fax1.set_title('Cluster Label Map')
815
    """im = fax1.imshow(label_mat, interpolation='none')
816
817
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
818
819
820
821
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
822
823

    # Plot results
824
825
826
827
828
829
830
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
                    color=plt.cm.jet(int(255 * index / (cluster_centroids.shape[0] - 1))))
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
831
            plot_map(ax, cluster_centroids[index])
832
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
833
834

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
835
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
836
837
838
839
840
841

    return fig501


###############################################################################

842
843
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
844
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
845
846
847
848
849
850
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
851
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
852
    e_vals: 3D real numpy array of eigenvalues
853
        structured as [component, rows, cols]
854
    num_comp : int
855
856
857
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
858
    mode: str, optional
859
860
861
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
862
    last: int, optional - should be provided when using "Truncated"
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
877
878
879

    Returns
    ---------
880
881
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
882
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
        print 'Creating full dendrogram from clusters'
        mode = None
    elif mode == 'Truncated':
        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
906
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
907
908
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
909
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
910
911
912
913
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

914
    # Get the distrance between cluster means
915
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
916
917

    # get hierachical pairings of clusters
918
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
919
920
921
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
922
923
924
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
925
926
927
928
929
930
931
932

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


933
def plot_1d_spectrum(data_vec, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
956
957
        warn('plot_1d_spectrum: Incompatible data sizes!!!!')
        print('1D:', data_vec.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
958
        return
959
960
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
961
962
963
964
965
966
967
968
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
969
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
970
971
972
973


###############################################################################

974
def plot_2d_spectrogram(mean_spectrogram, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
997
998
        warn('plot_2d_spectrogram: Incompatible data sizes!!!!')
        print('2D:', mean_spectrogram.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
999
        return
1000
1001
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
    # print mean_spectrogram.shape
    # print freq.shape
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1019
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
1020
1021
1022

###############################################################################

1023
1024

def plot_histgrams(p_hist, p_hbins, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

1088
1089
1090
    return fig


1091
def visualize_sho_results(h5_main, save_plots=True, show_plots=True):
1092
    """
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    Plots some loops, amplitude, phase maps for BE-Line and BEPS datasets.\n
    Note: The file MUST contain SHO fit gusses at the very least

    Parameters
    ----------
    h5_main : HDF5 Dataset
        dataset to be plotted
    save_plots : (Optional) Boolean
        Whether or not to save plots to files in the same directory as the h5 file
    show_plots : (Optional) Boolean
        Whether or not to display the plots on the screen

    Returns
    -------
    None
1108
    """
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

    def __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, spec_var_title, meas_var_title, save_plots,
                          folder_path, basename, num_rows, num_cols):
        plt_title = grp_name + '_' + win_title + '_Loops'
        fig, ax = plot_loops(ac_vec, resp_mat, evenly_spaced=True, plots_on_side=5, rainbow_plot=False,
                             x_label=spec_var_title, y_label=meas_var_title, subtitles='Loop', title=plt_title)
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

        plt_title = grp_name + '_' + win_title + '_Snaps'
        fig, axes = plot_map_stack(resp_mat.reshape(num_rows, num_cols, resp_mat.shape[1]),
                                   color_bar_mode="each", evenly_spaced=True, title='UDVS Step #',
                                   heading=plt_title, cmap=cmap_jet_white_center())
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

1125
1126
1127
    plt_path = None

    print('Creating plots of SHO Results from {}.'.format(h5_main.name))
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

    h5_file = h5_main.file

    expt_type = h5_file.attrs['data_type']
    if expt_type not in ['BEPSData', 'BELineData']:
        warn('Unsupported data format')
        return
    isBEPS = expt_type == 'BEPSData'

    (folder_path, basename) = os.path.split(h5_file.filename)
    basename, _ = os.path.splitext(basename)

    sho_grp = h5_main.parent
    chan_grp = sho_grp.parent

    grp_name = '_'.join(chan_grp.name[1:].split('/'))
    grp_name = '_'.join([grp_name, sho_grp.name.split('/')[-1].split('-')[0], h5_main.name.split('/')[-1]])

    try:
        h5_pos = h5_file[h5_main.attrs['Position_Indices']]
    except KeyError:
        print('No Position_Indices found as attribute of {}'.format(h5_main.name))
        print('Rows and columns will be calculated from dataset shape.')
        num_rows = int(np.floor((np.sqrt(h5_main.shape[0]))))
        num_cols = int(np.reshape(h5_main, [num_rows, -1, h5_main.shape[1]]).shape[1])
    else:
1154
1155
        num_rows = len(np.unique(h5_pos[:, 0]))
        num_cols = len(np.unique(h5_pos[:, 1]))
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

    try:
        h5_spec_vals = h5_file[h5_main.attrs['Spectroscopic_Values']]
    # except KeyError:
    #     warn('No Spectrosocpic Datasets found as attribute of {}'.format(h5_main.name))
    #     raise
    except:
        raise

    # Assume that there's enough memory to load all the guesses into memory
    amp_mat = h5_main['Amplitude [V]'] * 1000  # convert to mV ahead of time
    freq_mat = h5_main['Frequency [Hz]'] / 1000
    q_mat = h5_main['Quality Factor']
    phase_mat = h5_main['Phase [rad]']
    rsqr_mat = h5_main['R2 Criterion']

    if isBEPS:
        meas_type = chan_grp.parent.attrs['VS_mode']
        # basically 3 kinds for now - DC/current, AC, UD - lets ignore this
        if meas_type == 'load user defined VS Wave from file':
            warn('Not handling custom experiments for now')
            h5_file.close()
            return

        # Plot amplitude and phase maps at one or more UDVS steps

        if meas_type == 'AC modulation mode with time reversal':
            center = int(h5_spec_vals.shape[1] * 0.5)
1184
            ac_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['AC_Amplitude']][0:center])
1185

1186
1187
            forw_resp = np.squeeze(amp_mat[:, slice(0, center)])
            rev_resp = np.squeeze(amp_mat[:, slice(center, None)])
1188
1189
1190
1191

            for win_title, resp_mat in zip(['Forward', 'Reverse'], [forw_resp, rev_resp]):
                __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, 'AC Amplitude', 'Amplitude', save_plots,
                                  folder_path, basename, num_rows, num_cols)
1192
1193
        else:
            # plot loops at a few locations
1194
            dc_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['DC_Offset']])
1195
1196
            if chan_grp.parent.attrs['VS_measure_in_field_loops'] == 'in and out-of-field':

1197
1198
                dc_vec = np.squeeze(dc_vec[slice(0, None, 2)])

1199
1200
1201
1202
                in_phase = np.squeeze(phase_mat[:, slice(0, None, 2)])
                in_amp = np.squeeze(amp_mat[:, slice(0, None, 2)])
                out_phase = np.squeeze(phase_mat[:, slice(1, None, 2)])
                out_amp = np.squeeze(amp_mat[:, slice(1, None, 2)])
1203
1204
1205
1206

                for win_title, resp_mat in zip(['In_Field', 'Out_of_Field'], [in_phase * in_amp, out_phase * out_amp]):
                    __plot_loops_maps(dc_vec, resp_mat, grp_name, win_title, 'DC Bias', 'Piezoresponse (a.u.)',
                                      save_plots, folder_path, basename, num_rows, num_cols)
1207
            else:
1208
1209
                __plot_loops_maps(dc_vec, phase_mat * amp_mat, grp_name, '', 'DC Bias', 'Piezoresponse (a.u.)',
                                  save_plots, folder_path, basename, num_rows, num_cols)
1210
1211
1212
1213
1214
1215
1216
1217
1218

    else:  # BE-Line can only visualize the amplitude and phase maps:
        amp_mat = amp_mat.reshape(num_rows, num_cols)
        freq_mat = freq_mat.reshape(num_rows, num_cols)
        q_mat = q_mat.reshape(num_rows, num_cols)
        phase_mat = phase_mat.reshape(num_rows, num_cols)
        rsqr_mat = rsqr_mat.reshape(num_rows, num_cols)
        if save_plots:
            plt_path = os.path.join(folder_path, basename + '_' + grp_name + 'Maps.png')
1219
1220
1221
1222
1223
1224

        fig_ms, ax_ms = plot_map_stack(np.dstack((amp_mat, freq_mat, q_mat, phase_mat, rsqr_mat)),
                                       num_comps=5, color_bar_mode='each', heading=grp_name,
                                       title=['Amplitude (mV)', 'Frequency (kHz)', 'Quality Factor', 'Phase (deg)',
                                              'R^2 Criterion'], cmap=cmap_jet_white_center())
        fig_ms.savefig(plt_path, format='png', dpi=300)
1225
1226
1227
1228
1229

    if show_plots:
        plt.show()

    plt.close('all')