plot_utils.py 53.1 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
merged    
Chris Smith committed
7
from __future__ import division # int/int = float
8
from warnings import warn
9
import os
Chris Smith's avatar
merged    
Chris Smith committed
10
import h5py
11
import scipy
12
import matplotlib.pyplot as plt
13
from matplotlib.colors import LinearSegmentedColormap
14
from mpl_toolkits.axes_grid1 import ImageGrid
15
import numpy as np
16
from ..analysis.utils.be_loop import loop_fit_function
17
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
        color map object that can be used in place of plt.cm.jet
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
80

Chris Smith's avatar
Chris Smith committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def cmap_hot_desaturated():
    hot_desaturated = [(1, (255, 76, 76, 255)),
                       (0.857, (107, 0, 0, 255)),
                       (0.714, (255, 96, 0, 255)),
                       (0.571, (255, 255, 0, 255)),
                       (0.429, (0, 127, 0, 255)),
                       (0.285, (0, 255, 255, 255)),
                       (0.143, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    cdict = {'red': tuple([(dist, colors[0]/255.0, colors[0]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'green': tuple([(dist, colors[1]/255.0, colors[1]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'blue': tuple([(dist, colors[2]/255.0, colors[2]/255.0) for (dist, colors) in hot_desaturated][::-1])}

    return LinearSegmentedColormap('hot_desaturated', cdict)



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def discrete_cmap(num_bins, base_cmap=plt.cm.jet):
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Discretized color map

    Credits
    -------
    Jake VanderPlas
    License: BSD-style
    """

    base = plt.cm.get_cmap(base_cmap)
    color_list = base(np.linspace(0, 1, num_bins))
    cmap_name = base.name + str(num_bins)
    return base.from_list(cmap_name, color_list, num_bins)

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def plotLoopFitNGuess(Vdc, ds_proj_loops, ds_guess, ds_fit, title=''):
    '''
    Plots the loop guess, fit, source projected loops for a single cycle

    Parameters
    ----------
    Vdc - 1D float numpy array
        DC offset vector (unshifted)
    ds_proj_loops - 2D numpy array
        Projected loops arranged as [position, Vdc]
    ds_guess - 1D compound numpy array
        Loop guesses arranged as [position]
    ds_fit - 1D compound numpy array
        Loop fits arranged as [position]
    title - (Optional) String / unicode
        Title for the figure

    Returns
    ----------
    fig - matplotlib.pyplot.figure object
        Figure handle
    axes - 2D array of matplotlib.pyplot.axis handles
        handles to axes in the 2d figure
    '''
    shift_ind = int(-1 * len(Vdc) / 4)
    Vdc_shifted = np.roll(Vdc, shift_ind)

    num_plots = np.min([5, int(np.sqrt(ds_proj_loops.shape[0]))])
    fig, axes = plt.subplots(nrows=num_plots, ncols=num_plots, figsize=(18, 18))
    positions = np.linspace(0, ds_proj_loops.shape[0] - 1, num_plots ** 2, dtype=np.int)
    for ax, pos in zip(axes.flat, positions):
        ax.plot(Vdc, ds_proj_loops[pos, :], 'k', label='Raw')
158
159
        ax.plot(Vdc_shifted, loop_fit_function(Vdc_shifted, np.array(list(ds_guess[pos]))), 'g', label='guess')
        ax.plot(Vdc_shifted, loop_fit_function(Vdc_shifted, np.array(list(ds_fit[pos]))), 'r--', label='Fit')
160
161
162
163
164
165
166
167
        ax.set_xlabel('V_DC (V)')
        ax.set_ylabel('PR (a.u.)')
        ax.set_title('Loop ' + str(pos))
    ax.legend()
    fig.suptitle(title)
    fig.tight_layout()

    return fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
168
169
170

###############################################################################

171
172

def rainbowPlot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.jet, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
173
174
175
176
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

177
178
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
179
180
181
182
183
184
185
186
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
187
188
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
189
190
191
192
193
    """
    pts_per_step = int(len(ai_vec) / num_steps)
    for step in xrange(num_steps - 1):
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
194
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
197
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
198
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
201
202
203
    """
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.jet)
    fig.colorbar(CS3)"""


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def plot_line_family(ax, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='', cmap=plt.cm.jet, **kwargs):
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
    ax : axis handle
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

    for line_ind in xrange(num_lines):
        ax.plot(x_axis, line_family[line_ind],
                label=line_names[line_ind],
                color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)



241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def plot_map(axis, data, stdevs=2, show_colorbar=False, **kwargs):
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
    show_colorbar : Boolean (Optional. Default = True)
        Whether or not to show the color bar
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
261
262
263
264
265
266
267
268
269
270
    # if show_colorbar:
    #     im = axis.pcolor(data,
    #                         vmin=data_mean - stdevs * data_std, vmax=data_mean + stdevs * data_std, **kwargs)
    #     axis.figure.colorbar(pcol0, ax=axis)
    #     axis.axis('tight')
    # else:
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
                     **kwargs)
271
272
    axis.set_aspect('auto')

273
    return im
274

Somnath, Suhas's avatar
Somnath, Suhas committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
###############################################################################

def plotLoops(excit_wfm, h5_loops, h5_pos=None, central_resp_size=None,
              evenly_spaced=True, plots_on_side=5, rainbow_plot=True,
              x_label='', y_label='', subtitles='Eigenvector', title=None):
    """
    Plots loops from up to 25 evenly spaced positions

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
    h5_loops : float HDF5 dataset reference or 2D numpy array
        Dataset containing data arranged as (pixel, time)
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
    rainbow_plot : (optional) Boolean
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """

    plots_on_side = min(abs(plots_on_side), 5)
    num_pos = h5_loops.shape[0]
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, figsize=(12, 12))
    axes_lin = axes.flat

    cent_ind = int(0.5 * h5_loops.shape[1])
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
        r_resp_ind = h5_loops.shape[1]

    for count, posn in enumerate(chosen_pos):
        if rainbow_plot:
            rainbowPlot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], h5_loops[posn, l_resp_ind:r_resp_ind])
        else:
            axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], h5_loops[posn, l_resp_ind:r_resp_ind])

        if type(h5_pos) != type(None):
            # print 'Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0])
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
356
357
358


def plotSHOMaps(sho_maps, map_names, stdevs=2, title='', save_path=None): 
Somnath, Suhas's avatar
Somnath, Suhas committed
359
    """
Chris Smith's avatar
merged    
Chris Smith committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    Plots the SHO quantity maps for a single UDVS step
    
    Parameters
    ------------
    sho_maps : List of 2D numpy arrays
        Each SHO map is structured as [row, col]
    map_names: List of strings
        Titles for each of the SHO maps
    stdevs : (Optional) Unsigned int
        Number of standard deviations from the mean to be used to clip the color axis
    title : (Optional) String
        Title for the entire figure. Group name is most appropriate here
    save_path : (Optional) String
        Absolute path to write the figure to
        
    Returns
    ----------
    None
Somnath, Suhas's avatar
Somnath, Suhas committed
378
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
379
    fig, axes = plt.subplots(ncols=3, nrows=2, sharex=True, figsize=(15, 10))
Chris Smith's avatar
merged    
Chris Smith committed
380
381
    
    for index, ax_hand, data_mat, qty_name in zip(range(len(map_names)), axes.flat, sho_maps, map_names):
Somnath, Suhas's avatar
Somnath, Suhas committed
382
        plot_map(ax_hand, data_mat, stdevs=stdevs)
Chris Smith's avatar
merged    
Chris Smith committed
383
384
        ax_hand.set_title(qty_name) 
         
Somnath, Suhas's avatar
Somnath, Suhas committed
385
386
    plt.setp([ax.get_xticklabels() for ax in axes[0, :]], visible=True)
    axes[1, 2].axis('off')
Chris Smith's avatar
merged    
Chris Smith committed
387
388
389
390
391
392
393
    
    plt.tight_layout()   
    if save_path:
        fig.savefig(save_path, format='png', dpi=300)


def plotVSsnapshots(resp_mat, title='', stdevs=2, save_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
394
    """
Chris Smith's avatar
merged    
Chris Smith committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    Plots the spatial distribution of the response at evenly spaced UDVS steps
    
    Parameters
    -------------
    resp_mat : 3D numpy array
        SHO responses arranged as [udvs_step, rows, cols]
    title : (Optional) String
        Super title for the plots - Preferably the group name
    stdevs : (Optional) string
        Number of standard deviations from the mean to be used to clip the color axis
    save_path : (Optional) String
        Absolute path to write the figure to
        
    Returns
    ----------
    None
Somnath, Suhas's avatar
Somnath, Suhas committed
411
    """
Chris Smith's avatar
merged    
Chris Smith committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    
    num_udvs = resp_mat.shape[2]
    if num_udvs >= 9:
        tot_plots = 9
    elif num_udvs >= 4:
        tot_plots = 4
    else:
        tot_plots = 1
    delta_pos = int(np.ceil(num_udvs/tot_plots)) 
    
    fig, axes = plt.subplots(nrows=int(tot_plots**0.5),ncols=int(tot_plots**0.5),
                             sharex=True, sharey=True, figsize=(12, 12)) 
    if tot_plots > 1:    
        axes_lin = axes.reshape(tot_plots)
    else:
        axes_lin = axes
    
    for count, posn in enumerate(xrange(0,num_udvs, delta_pos)):
        
        snapshot = np.squeeze(resp_mat[:,:,posn])
432
433
        amp_mean = np.mean(snapshot) 
        amp_std = np.std(snapshot)
Chris Smith's avatar
merged    
Chris Smith committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        ndims = len(snapshot.shape)
        if ndims == 2:
            axes_lin[count].imshow(snapshot, vmin=amp_mean-stdevs*amp_std, vmax=amp_mean+stdevs*amp_std)
        elif ndims == 1:
            np.clip(snapshot,amp_mean-stdevs*amp_std,amp_mean+stdevs*amp_std,snapshot)
            axes_lin[count].plot(snapshot)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].set_title('UDVS Step #' + str(posn))
    
    fig.suptitle(title)
    plt.tight_layout()
    if save_path:
        fig.savefig(save_path, format='png', dpi=300)

Somnath, Suhas's avatar
Somnath, Suhas committed
449
450
451

def plotSpectrograms(eigenvectors, num_comps=4, title='Eigenvectors', xlabel='Step', stdevs=2,
                     show_colorbar=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
452
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
    eigenvectors : 3D numpy complex matrices
        Eigenvectors rearranged as - [row, col, component]


    xaxis : 1D real numpy array
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
475
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
476
477
478
479
480
481
482
483
484
485
486
    import matplotlib.pyplot as plt
    fig_h, fig_w = (4, 4 + show_colorbar * 1.00)
    p_rows = int(np.ceil(np.sqrt(num_comps)))
    p_cols = int(np.floor(num_comps / p_rows))
    fig201, axes201 = plt.subplots(p_rows, p_cols, figsize=(p_cols * fig_w, p_rows * fig_h))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

    for index in xrange(num_comps):
        cur_map = np.transpose(eigenvectors[index, :, :])
        ax = axes201.flat[index]
487
488
        mean = np.mean(cur_map)
        std = np.std(cur_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        ax.imshow(cur_map, cmap='jet',
                  vmin=mean - stdevs * std,
                  vmax=mean + stdevs * std)
        ax.set_title('Eigenvector: %d' % (index + 1))
        ax.set_aspect('auto')
        ax.set_xlabel(xlabel)
        ax.axis('tight')

    return fig201, axes201


###############################################################################

def plotBEspectrograms(eigenvectors, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
503
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
    eigenvectors : 3D numpy complex matrices
        Eigenvectors rearranged as - [row, col, component]


    xaxis : 1D real numpy array
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
526
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
527
528
529
530
531
532
533
534
535
536
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

    for index in xrange(num_comps):
        cur_map = np.transpose(eigenvectors[index, :, :])
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
537
538
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
539
540
541
542
543
544
545
546
547
548
549
550
551
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

def plotBEeigenvectors(eigenvectors, num_comps=4, xlabel=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
552
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
    eigenvectors : 3D numpy complex matrices
        Eigenvectors rearranged as - [row, col, component]


    xaxis : 1D real numpy array
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
575
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title("Eigenvectors")

    for index in xrange(num_comps):
        cur_map = eigenvectors[index, :]
        #         axes = [axes201.flat[index], axes201.flat[index+num_comps], axes201.flat[index+2*num_comps], axes201.flat[index+3*num_comps]]
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
            ax.plot(func(cur_map))
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
        ax.set_xlabel(xlabel)
    fig201.tight_layout()

    return fig201, axes201


###############################################################################

def plotBELoops(xaxis, xlabel, amp_mat, phase_mat, num_comps, title=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
599
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    Plots the provided loops from the SHO. Replace / merge with function in BESHOUtils

    Parameters:
    -------------
    xaxis : 1D real numpy array
        The vector to plot against
    xlabel : string
        Label for x axis
    amp_mat : 2D real numpy array
        Amplitude matrix arranged as [points, component]
    phase_mat : 2D real numpy array
        Phase matrix arranged as [points, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
620
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 6))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

    for index in xrange(num_comps):
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        resp_vecs = [amp_mat[index, :], phase_mat[index, :]]
        resp_titles = ['Amplitude', 'Phase']

        for ax, resp, titl in zip(axes, resp_vecs, resp_titles):
            ax.plot(xaxis, resp)
            ax.set_title('%s %d' % (titl, index + 1))
            ax.set_aspect('auto')
            ax.set_xlabel(xlabel)

    fig201.tight_layout()
    return fig201, axes201


###############################################################################

def plotScree(S, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
643
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
644
645
646
647
648
649
650
651
652
653
    Plots the S or scree

    Parameters:
    -------------
    S : 1D real numpy array
        The S vector from SVD

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
654
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
655
656
657
658
659
660
661
662
663
664
665
666
667
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
    axes203.loglog(np.arange(len(S)) + 1, S, 'b', marker='*')
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
    axes203.set_xlim(left=1, right=len(S))
    axes203.set_ylim(bottom=np.min(S), top=np.max(S))
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
# ###############################################################################
#
# def plot_map_stack(map_stack, num_comps=4, stdevs=2, show_colorbar=False,
#                    title='Component', heading='Map Stack', **kwargs):
#     """
#     Plots the provided stack of maps
#
#     Parameters:
#     -------------
#     map_stack : 3D real numpy array
#         structured as [rows, cols, component]
#     num_comps : int
#         Number of components to plot
#     stdevs : int
#         Number of standard deviations to consider for plotting
#     colormap : string or object from matplotlib.colors (Optional. Default = jet or rainbow)
#         Colormap for the plots
#     show_colorbar : Boolean (Optional. Default = True)
#         Whether or not to show the color bar
#
#     Returns:
#     ---------
#     fig, axes
#     """
#     fig_h, fig_w = (4, 4 + show_colorbar * 1.00)
#     p_rows = int(np.ceil(np.sqrt(num_comps)))
#     p_cols = int(np.floor(num_comps / p_rows))
#     if p_rows*p_cols < num_comps:
#         p_cols += 1
#     fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
#     fig202.subplots_adjust(hspace=0.4, wspace=0.4)
#     fig202.canvas.set_window_title(heading)
#     fig202.suptitle(heading, fontsize=16)
#
#     for index in xrange(num_comps):
#         plot_map(axes202.flat[index], map_stack[:, :, index], stdevs=stdevs, show_colorbar=show_colorbar, **kwargs)
#         axes202.flat[index].set_title('{} {}'.format(title, index))
#     fig202.tight_layout()
#
#     return fig202, axes202


def plot_map_stack(map_stack, num_comps=4, stdevs=2, color_bar_mode=None,
Somnath, Suhas's avatar
Somnath, Suhas committed
711
                   title='Component', heading='Map Stack', **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
712
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
713
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
714
715
716

    Parameters:
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
717
    map_stack : 3D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
718
719
720
721
722
723
724
        structured as [rows, cols, component]
    num_comps : int
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
    colormap : string or object from matplotlib.colors (Optional. Default = jet or rainbow)
        Colormap for the plots
725
726
727
    color_bar_mode : String, Optional
        Options are None, single or each.
        Default None
Somnath, Suhas's avatar
Somnath, Suhas committed
728
729
730
731

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
732
    """
733
    fig_h, fig_w = (4, 4)
Somnath, Suhas's avatar
Somnath, Suhas committed
734
735
    p_rows = int(np.ceil(np.sqrt(num_comps)))
    p_cols = int(np.floor(num_comps / p_rows))
736
737
    if p_rows*p_cols < num_comps:
        p_cols += 1
738
    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h))
739
740
741
742
743
744
745
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
                        cbar_pad='1%',
                        cbar_size='5%',
                        axes_pad=(0.1*fig_w, 0.07*fig_h))
    # fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
    # fig202.subplots_adjust(hspace=0.4, wspace=0.4)
Somnath, Suhas's avatar
Somnath, Suhas committed
746
747
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
748

749
750
751
752
753
754
755
756
757
758
759
    for index in range(num_comps):
        im = plot_map(axes202[index],
                      map_stack[:, :, index],
                      stdevs=stdevs,
                      show_colorbar=False, **kwargs)
        axes202[index].set_title('{} {}'.format(title, index))
        if color_bar_mode is 'each':
            axes202.cbar_axes[index].colorbar(im)

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
760
761
762

    return fig202, axes202

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# TODO: The label and units for the main dataset itself are missing in most cases! - ie. I don't know that the data is 'Current' and 'nA'


def plot_cluster_results(h5_group, y_spec_label):
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)

    plotClusterResults(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                       spec_label=x_spec_label, resp_label=y_spec_label,
                       pos_labels=pos_labels, pos_ticks=pos_ticks)
Somnath, Suhas's avatar
Somnath, Suhas committed
804
805

###############################################################################
806
807


Chris Smith's avatar
Chris Smith committed
808
def plotClusterResults(label_mat, mean_response, spec_val=None, cmap=plt.cm.jet,
809
810
                       spec_label='Spectroscopic Value', resp_label='Response',
                       pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
811
    """
Chris Smith's avatar
Chris Smith committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    Plot the cluster labels and mean response for each cluster

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
    mean_response : 2D ndarray or h5py.Dataset
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
    spec_val :  1D ndarray or h5py.Dataset of floats, optional
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
834
835
836
837
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
838
839
840
841
842
843
844

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
845
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
846
847

    def __plotCentroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
848
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
849
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
850
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
851
852
853
854
855
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
856
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
857

Chris Smith's avatar
Chris Smith committed
858
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
859
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
860
861
862
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
863
864
        axes = [ax_map, ax_amp, ax_phase]

Chris Smith's avatar
Chris Smith committed
865
866
867
        __plotCentroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
        __plotCentroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
868
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
869
870
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
871
    else:
Chris Smith's avatar
Chris Smith committed
872
873
874
875
876
877
878
879
880
881
882
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
        __plotCentroids(mean_response, ax_resp, spec_val, spec_label,
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
883
884

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
885
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
886
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
887
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
888
889
890
891
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
892

Chris Smith's avatar
Chris Smith committed
893
    # im = ax_map.imshow(label_mat, interpolation='none')
894
895
896
897
898
899
900
901
902
903
904
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

905
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
906
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
907
908
909
910
911
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    ax_map.axis('tight')"""
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
912
    ax_map.axis('tight')
913
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
914
915
916
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
917
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
918
919
920
921
922

    return fig, axes

###############################################################################

923
924
925

def plotKMeansClusters(label_mat, cluster_centroids, max_centroids=4,
                       spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
926
    """
927
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
928

929
930
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
931
932
933
934
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
935
936
    max_centroids : unsigned int
                    Number of centroids to plot
937
938
939
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
940
941
942
943
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
944

945
946
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
947
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
948
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
949

950
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

979
    # First plot the labels map:
980
981
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
                                                      base_cmap=plt.cm.jet))
982
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
983
984
    fax1.axis('tight')
    fax1.set_aspect('auto')
985
    fax1.set_title('Cluster Label Map')
986
    """im = fax1.imshow(label_mat, interpolation='none')
987
988
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
989
990
991
992
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
993
994

    # Plot results
995
996
997
998
999
1000
1001
1002
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
                    color=plt.cm.jet(int(255 * index / (cluster_centroids.shape[0] - 1))))
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
            plot_map(ax, cluster_centroids[index], show_colorbar=True)
1003
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
1004
1005

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
1006
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
1007
1008
1009
1010
1011
1012
1013
1014

    return fig501


###############################################################################

def plotClusterDendrograms(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                           sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
1015
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1016
1017
1018
1019
1020
1021
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
1022
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1023
    e_vals: 3D real numpy array of eigenvalues
1024
        structured as [component, rows, cols]
Somnath, Suhas's avatar
Somnath, Suhas committed
1025
    num_comps : int
1026
1027
1028
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
1029
    mode: str, optional
1030
1031
1032
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
1033
    last: int, optional - should be provided when using "Truncated"
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
1048
1049
1050

    Returns
    ---------
1051
1052
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
1053
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
        print 'Creating full dendrogram from clusters'
        mode = None
    elif mode == 'Truncated':
        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
        mode = 'lastp'
        show_contracted = True
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
    for k1 in xrange(num_cluster):
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
        for k2 in xrange(len(i_x)):
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)


        # Get the distrance between cluster means
1088
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
1089
1090

    # get hierachical pairings of clusters
1091
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
1092
1093
1094
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
1095
1096
1097
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


def plot1DSpectrum(data_vec, freq, title, figure_path=None):
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
        #         print '1D:',data_vec.shape, freq.shape
        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
        return
    freq = freq * 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    # ax[0].set_xlabel('Frequency (kHz)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
    return (fig, ax)


###############################################################################

def plot2DSpectrogram(mean_spectrogram, freq, title, figure_path=None):
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
        #  print '2D:',mean_spectrogram.shape, freq.shape
        warn('plot2DSpectrogram: Incompatible data sizes!!!!')
        return
    freq = freq * 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True);
    # print mean_spectrogram.shape
    # print freq.shape
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
    return (fig, ax)


###############################################################################

def plotHistgrams(p_hist, p_hbins, title, figure_path=None):
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

1262
1263
1264
1265
    return fig


def plotSHOLoops(dc_vec, resp_mat, x_label='', y_label='', title=None, save_path=None):
1266
    """
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
    Plots BE loops from up to 9 positions (evenly separated)

    Parameters
    -----------
    dc_vec : 1D numpy array
        X axis - DC offset / AC amplitude
    resp_mat : real 2D numpy array
        containing quantity such as amplitude or phase organized as
        [position, spectroscopic index]
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    title : (optional) String
        Main plot title
    save_path : (Optional) String
        Absolute path to write the figure to

    Returns
    -----------
    None
1288
    """
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
    num_pos = resp_mat.shape[0]
    if num_pos >= 9:
        tot_plots = 9
    elif num_pos >= 4:
        tot_plots = 4
    else:
        tot_plots = 1
    delta_pos = int(np.ceil(num_pos / tot_plots))

    fig, axes = plt.subplots(nrows=int(tot_plots ** 0.5), ncols=int(tot_plots ** 0.5),
                             figsize=(12, 12))
    if tot_plots > 1:
        axes_lin = axes.reshape(tot_plots)
    else:
        axes_lin = axes

    for count, posn in enumerate(xrange(0, num_pos, delta_pos)):
        axes_lin[count].plot(dc_vec, np.squeeze(resp_mat[posn, :]))
        axes_lin[count].set_title('Pixel #' + str(posn))
        axes_lin[count].set_xlabel(x_label)
        axes_lin[count].set_ylabel(y_label)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')

    fig.suptitle(title)
    fig.tight_layout()
    if save_path:
        fig.savefig(save_path, format='png', dpi=300)


def visualizeSHOResults(h5_main, save_plots=True, show_plots=True):
1320
    """
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
    Plots some loops, amplitude, phase maps for BE-Line and BEPS datasets.\n
    Note: The file MUST contain SHO fit gusses at the very least

    Parameters
    ----------
    h5_main : HDF5 Dataset
        dataset to be plotted
    save_plots : (Optional) Boolean
        Whether or not to save plots to files in the same directory as the h5 file
    show_plots : (Optional) Boolean
        Whether or not to display the plots on the screen

    Returns
    -------
    None
1336
1337
1338
1339
    """
    plt_path = None

    print('Creating plots of SHO Results from {}.'.format(h5_main.name))
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

    h5_file = h5_main.file

    expt_type = h5_file.attrs['data_type']
    if expt_type not in ['BEPSData', 'BELineData']:
        warn('Unsupported data format')
        return
    isBEPS = expt_type == 'BEPSData'

    (folder_path, basename) = os.path.split(h5_file.filename)
    basename, _ = os.path.splitext(basename)

    sho_grp = h5_main.parent
    chan_grp = sho_grp.parent

    grp_name = '_'.join(chan_grp.name[1:].split('/'))
    grp_name = '_'.join([grp_name, sho_grp.name.split('/')[-1].split('-')[0], h5_main.name.split('/')[-1]])

    try:
        h5_pos = h5_file[h5_main.attrs['Position_Indices']]
    except KeyError:
        print('No Position_Indices found as attribute of {}'.format(h5_main.name))
        print('Rows and columns will be calculated from dataset shape.')
        num_rows = int(np.floor((np.sqrt(h5_main.shape[0]))))
        num_cols = int(np.reshape(h5_main, [num_rows, -1, h5_main.shape[1]]).shape[1])
    else:
1366
1367
        num_rows = len(np.unique(h5_pos[:, 0]))
        num_cols = len(np.unique(h5_pos[:, 1]))
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

    try:
        h5_spec_inds = h5_file[h5_main.attrs['Spectroscopic_Indices']]
        h5_spec_vals = h5_file[h5_main.attrs['Spectroscopic_Values']]
    # except KeyError:
    #     warn('No Spectrosocpic Datasets found as attribute of {}'.format(h5_main.name))
    #     raise
    except:
        raise

    # Assume that there's enough memory to load all the guesses into memory
    amp_mat = h5_main['Amplitude [V]'] * 1000  # convert to mV ahead of time
    freq_mat = h5_main['Frequency [Hz]'] / 1000
    q_mat = h5_main['Quality Factor']
    phase_mat = h5_main['Phase [rad]']
    rsqr_mat = h5_main['R2 Criterion']

    if isBEPS:
        meas_type = chan_grp.parent.attrs['VS_mode']
        # basically 3 kinds for now - DC/current, AC, UD - lets ignore this
        if meas_type == 'load user defined VS Wave from file':
            warn('Not handling custom experiments for now')
            h5_file.close()
            return

        # Plot amplitude and phase maps at one or more UDVS steps

        if meas_type == 'AC modulation mode with time reversal':
            center = int(h5_spec_vals.shape[1] * 0.5)
1397
            ac_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['AC_Amplitude']][0:center])
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
            forw_resp = np.squeeze(amp_mat[:, slice(0, center)])
            plt_title = grp_name + '_Forward_Loops'
            if save_plots:
                plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
            plotSHOLoops(ac_vec, forw_resp, 'AC Amplitude', 'Amplitude', title=plt_title, save_path=plt_path)
            rev_resp = np.squeeze(amp_mat[:, slice(center, None)])
            plt_title = grp_name + '_Reverse_Loops'
            if save_plots:
                plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
            plotSHOLoops(ac_vec, rev_resp, 'AC Amplitude', 'Amplitude', title=plt_title, save_path=plt_path)
            plt_title = grp_name + '_Forward_Snaps'
            if save_plots:
                plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
            plotVSsnapshots(forw_resp.reshape(num_rows, num_cols, forw_resp.shape[1]), title=plt_title,
                            save_path=plt_path)
            plt_title = grp_name + '_Reverse_Snaps'
            if save_plots:
                plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
            plotVSsnapshots(rev_resp.reshape(num_rows, num_cols, rev_resp.shape[1]), title=plt_title,
                            save_path=plt_path)
        else:
            # plot loops at a few locations
1420
            dc_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['DC_Offset']])
1421
1422
1423
1424
            if chan_grp.parent.attrs['VS_measure_in_field_loops'] == 'in and out-of-field':

                in_phase = np.squeeze(phase_mat[:, slice(0, None, 2)])
                in_amp = np.squeeze(amp_mat[:, slice(0, None, 2)])
1425
                dc_vec = np.squeeze(dc_vec[slice(0, None, 2)])
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
                plt_title = grp_name + '_In_Field_Loops'
                if save_plots:
                    plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
                plotSHOLoops(dc_vec, in_phase * in_amp, 'DC Bias', 'Piezoresponse (a.u.)', title=plt_title,
                             save_path=plt_path)
                out_phase = np.squeeze(phase_mat[:, slice(1, None, 2)])
                out_amp = np.squeeze(amp_mat[:, slice(1, None, 2)])
                plt_title = grp_name + '_Out_of_Field_Loops'
                if save_plots:
                    plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
                plotSHOLoops(dc_vec, out_phase * out_amp, 'DC Bias', 'Piezoresponse (a.u.)', title=plt_title,
                             save_path=plt_path)
                # print 'trying to reshape', in_phase.shape, 'into', in_phase.shape[0],',',num_rows,',',num_cols
                plt_title = grp_name + '_In_Field_Snaps'
                if save_plots:
                    plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
                plotVSsnapshots(in_phase.reshape(num_rows, num_cols, in_phase.shape[1]), title=plt_title,
                                save_path=plt_path)
                plt_title = grp_name + '_Out_of_Field_Snaps'
                if save_plots:
                    plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
                plotVSsnapshots(out_phase.reshape(num_rows, num_cols, out_phase.shape[1]), title=plt_title,
                                save_path=plt_path)
            else:
                plt_title = grp_name + '_Loops'
                if save_plots:
                    plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
1453
1454
                plotSHOLoops(dc_vec, phase_mat * amp_mat, 'DC Bias', 'Piezoresponse (a.u.)', title=plt_title,
                             save_path=plt_path)
1455
1456
1457
                plt_title = grp_name + '_Snaps'
                if save_plots:
                    plt_path = os.path.join(folder_path, basename + '_' + plt_title + '.png')
1458
1459
                plotVSsnapshots(phase_mat.reshape(num_rows, num_cols, phase_mat.shape[1]), title=plt_title,
                                save_path=plt_path)
1460
1461
1462
1463
1464
1465
1466
1467
1468

    else:  # BE-Line can only visualize the amplitude and phase maps:
        amp_mat = amp_mat.reshape(num_rows, num_cols)
        freq_mat = freq_mat.reshape(num_rows, num_cols)
        q_mat = q_mat.reshape(num_rows, num_cols)
        phase_mat = phase_mat.reshape(num_rows, num_cols)
        rsqr_mat = rsqr_mat.reshape(num_rows, num_cols)
        if save_plots:
            plt_path = os.path.join(folder_path, basename + '_' + grp_name + 'Maps.png')
Somnath, Suhas's avatar
Somnath, Suhas committed
1469
        plotSHOMaps([amp_mat, freq_mat, q_mat, phase_mat, rsqr_mat],
1470
1471
1472
1473
1474
1475
1476
                    ['Amplitude (mV)', 'Frequency (kHz)', 'Quality Factor',
                     'Phase (deg)', 'R^2 Criterion'], title=grp_name, save_path=plt_path)

    if show_plots:
        plt.show()

    plt.close('all')