plot_utils.py 57.3 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
Unknown's avatar
Unknown committed
13
import os
14
import sys
Chris Smith's avatar
merged    
Chris Smith committed
15
import h5py
16
import matplotlib.pyplot as plt
17
18
import numpy as np
import scipy
19
from scipy.signal import blackman
Unknown's avatar
Unknown committed
20
import ipywidgets as widgets
21
from matplotlib.colors import LinearSegmentedColormap
Unknown's avatar
Unknown committed
22
from mpl_toolkits.axes_grid1 import ImageGrid, make_axes_locatable
23
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
24

25
26
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
27

Somnath, Suhas's avatar
Somnath, Suhas committed
28
default_cmap = plt.cm.viridis
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


def get_cmap_object(cmap):
    """
    Get the matplotlib.colors.LinearSegmentedColormap object regardless of the input

    Parameters
    ----------
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
    Returns
    -------
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Requested / Default colormap object
    """
    if cmap is None:
        return default_cmap
    elif isinstance(cmap, str):
Unknown's avatar
Unknown committed
47
        return plt.get_cmap(cmap)
48
49
50
    return cmap


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
83

84
85
86
87
88
89
90
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
91
        color map object that can be used in place of the default colormap
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
113

Chris Smith's avatar
Chris Smith committed
114

Somnath, Suhas's avatar
Somnath, Suhas committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
Unknown's avatar
Unknown committed
145
                             for (dist, colors) in interp_vals][::-1])}
Somnath, Suhas's avatar
Somnath, Suhas committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
176
177


Somnath, Suhas's avatar
Somnath, Suhas committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
197
198


199
def discrete_cmap(num_bins, base_cmap=default_cmap):
200
201
202
203
204
205
206
207
208
209
210
211
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
212
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
213
214
        Discretized color map

Chris Smith's avatar
Chris Smith committed
215
216
217
218
219
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

220
    """
221
    if base_cmap is None:
222
        base_cmap = default_cmap.name
223

224
    elif isinstance(base_cmap, type(default_cmap)):
225
        base_cmap = base_cmap.name
226

227
228
229
230
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
231

232

Chris Smith's avatar
Chris Smith committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
259

260
261

def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=default_cmap, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
262
263
264
265
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

266
267
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
268
269
270
271
272
273
274
275
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
276
277
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
278
    """
279
280
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
281
    pts_per_step = int(len(ai_vec) / num_steps)
282
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
283
284
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
285
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
286
287
288
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
289
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
290
    """
291
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
292
293
294
    fig.colorbar(CS3)"""


295
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
296
                     cmap=default_cmap, y_offset=0, **kwargs):
297
298
299
300
301
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
302
    axis : axis handle
303
304
305
306
307
308
309
310
311
312
313
314
315
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
316
317
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
318
    """
319
320
    cmap = get_cmap_object(cmap)

321
322
323
324
325
326
327
328
329
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

330
    for line_ind in range(num_lines):
Unknown's avatar
Unknown committed
331
        axis.plot(x_axis, line_family[line_ind] + line_ind * y_offset,
332
333
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
334
335


Unknown's avatar
Unknown committed
336
def plot_map(axis, data, stdevs=None, origin='lower', **kwargs):
337
338
339
340
341
342
343
344
345
346
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
Unknown's avatar
Unknown committed
347
348
    stdevs : unsigned int (Optional. Default = None)
        Number of standard deviations to consider for plotting.  If None, full range is plotted.
Chris Smith's avatar
Chris Smith committed
349
350
351
352
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
353

354
355
356
    Returns
    -------
    """
Unknown's avatar
Unknown committed
357
358
359
360
361
362
363
364
365
    if stdevs is not None:
        data_mean = np.mean(data)
        data_std = np.std(data)
        plt_min = data_mean - stdevs * data_std
        plt_max = data_mean + stdevs * data_std
    else:
        plt_min = np.min(data)
        plt_max = np.max(data)

366
    im = axis.imshow(data, interpolation='none',
Unknown's avatar
Unknown committed
367
368
                     vmin=plt_min,
                     vmax=plt_max,
369
                     origin=origin,
370
                     **kwargs)
371

372
    return im
373

374

Unknown's avatar
Unknown committed
375
376
def single_img_cbar_plot(axis, img, show_xy_ticks=None, show_cbar=True, x_size=1, y_size=1, num_ticks=4,
                         cbar_label=None, tick_font_size=14, **kwargs):
377
378
379
380
381
382
383
384
385
386
    """
    Plots an image within the given axis with a color bar + label and appropriate X, Y tick labels.
    This is particularly useful to get readily interpretable plots for papers

    Parameters
    ----------
    axis : matplotlib.axis object
        Axis to plot this image onto
    img : 2D numpy array with real values
        Data for the image plot
Unknown's avatar
Unknown committed
387
    show_xy_ticks : bool, Optional, default = None, shown unedited
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        Whether or not to show X, Y ticks
    show_cbar : bool, optional, default = True
        Whether or not to show the colorbar
    x_size : float, optional, default = 1
        Extent of tick marks in the X axis. This could be something like 1.5 for 1.5 microns
    y_size : float, optional, default = 1
        Extent of tick marks in y axis
    num_ticks : unsigned int, optional, default = 4
        Number of tick marks on the X and Y axes
    cbar_label : str, optional, default = None
        Labels for the colorbar. Use this for something like quantity (units)
    tick_font_size : unsigned int, optional, default = 14
        Font size to apply to x, y, colorbar ticks and colorbar label
    kwargs : dictionary
        Anything else that will be passed on to plot_map or imshow

    Returns
    -------
    im_handle : handle to image plot
        handle to image plot
    cbar : handle to color bar
        handle to color bar
    """
    if 'clim' not in kwargs:
Unknown's avatar
Unknown committed
412
        im_handle = plot_map(axis, img, **kwargs)
413
414
415
    else:
        im_handle = axis.imshow(img, origin='lower', **kwargs)

Unknown's avatar
Unknown committed
416
    if show_xy_ticks is True:
417
418
419
420
421
422
423
        x_ticks = np.linspace(0, img.shape[1] - 1, num_ticks, dtype=int)
        y_ticks = np.linspace(0, img.shape[0] - 1, num_ticks, dtype=int)
        axis.set_xticks(x_ticks)
        axis.set_yticks(y_ticks)
        axis.set_xticklabels([str(np.round(ind * x_size / (img.shape[1] - 1), 2)) for ind in x_ticks])
        axis.set_yticklabels([str(np.round(ind * y_size / (img.shape[0] - 1), 2)) for ind in y_ticks])
        set_tick_font_size(axis, tick_font_size)
Unknown's avatar
Unknown committed
424
    elif show_xy_ticks is False:
425
426
        axis.set_xticks([])
        axis.set_yticks([])
Unknown's avatar
Unknown committed
427
428
    else:
        set_tick_font_size(axis, tick_font_size)
429
430

    if show_cbar:
Unknown's avatar
Unknown committed
431
432
433
434
435
436
        # cbar = fig.colorbar(im_handle, ax=axis)
        # divider = make_axes_locatable(axis)
        # cax = divider.append_axes('right', size='5%', pad=0.05)
        # cbar = plt.colorbar(im_handle, cax=cax)
        cbar = plt.colorbar(im_handle, ax=axis, orientation='vertical',
                            fraction=0.046, pad=0.04, use_gridspec=True)
437
438
439
440
441
442
443
444
445
446
        if cbar_label is not None:
            cbar.set_label(cbar_label, fontsize=tick_font_size)
        """
        z_lims = cbar.get_clim()
        cbar.set_ticks(np.linspace(z_lims[0],z_lims[1], num_ticks))
        """
        cbar.ax.tick_params(labelsize=tick_font_size)
    return im_handle, cbar


Unknown's avatar
Unknown committed
447
448
449
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True,
               plots_on_side=5, x_label='', y_label='', subtitles='Position', title='',
               central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
450
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
451
    """
452
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
453
454
455
456
457

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
458
459
460
461
462
463
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
464
465
466
467
468
469
470
471
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
472
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
487
    if type(datasets) in [h5py.Dataset, np.ndarray]:
488
489
490
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
491
        datasets = [datasets]
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return

    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
528
529

    plots_on_side = min(abs(plots_on_side), 5)
530

Somnath, Suhas's avatar
Somnath, Suhas committed
531
532
533
534
535
536
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

537
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
538
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
539

540
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
541
542
543
544
545
546
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
547
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
548
549

    for count, posn in enumerate(chosen_pos):
550
551
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
552
        else:
553
            for dataset, col_val in zip(datasets, line_colors):
Unknown's avatar
Unknown committed
554
555
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind],
                                     color=col_val)
556
        if h5_pos is not None:
557
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
558
559
560
561
562
563
564
565
566
567
568
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
569
570
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
571
572
573
574
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
575

Unknown's avatar
Unknown committed
576

Somnath, Suhas's avatar
Somnath, Suhas committed
577
578
###############################################################################

579

580
581
def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2,
                           cmap=default_cmap):
Somnath, Suhas's avatar
Somnath, Suhas committed
582
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
583
584
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
585
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
586
    -------------
587
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
588
589
590
591
592
593
594
595
596
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting
597
598
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
Somnath, Suhas's avatar
Somnath, Suhas committed
599

Chris Smith's avatar
Chris Smith committed
600
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
601
602
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
603
    """
604
605
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
606
607
608
609
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

610
    for index in range(num_comps):
611
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
612
613
614
615
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
616
617
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
618
            ax.imshow(func(cur_map), cmap=cmap,
Somnath, Suhas's avatar
Somnath, Suhas committed
619
620
621
622
623
624
625
626
627
628
629
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

630
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
631
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
632
633
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
634
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
635
    -------------
636
637
638
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
639
        The vector to plot against
Unknown's avatar
Unknown committed
640
641
642
643
    heading : str
        Title to plot above everything else
    subtitle : str
        Subtile to of Figure
Somnath, Suhas's avatar
Somnath, Suhas committed
644
645
    num_comps : int
        Number of components to plot
Unknown's avatar
Unknown committed
646
    x_label : str
Somnath, Suhas's avatar
Somnath, Suhas committed
647
648
        Label for x axis

Chris Smith's avatar
Chris Smith committed
649
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
650
651
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
652
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
653
654
655
656
657
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
658
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
659

660
    for index in range(num_comps):
661
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
662
663
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
664
665
666
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
667
668
669
670
    fig201.tight_layout()

    return fig201, axes201

Unknown's avatar
Unknown committed
671

Somnath, Suhas's avatar
Somnath, Suhas committed
672
673
674
###############################################################################


675
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
676
    """
677
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
678

Chris Smith's avatar
Chris Smith committed
679
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
680
    -------------
681
682
    scree : 1D real numpy array
        The scree vector from SVD
Unknown's avatar
Unknown committed
683
684
    title : str
        Figure title.  Default Scree
Somnath, Suhas's avatar
Somnath, Suhas committed
685

Chris Smith's avatar
Chris Smith committed
686
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
687
688
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
689
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
690
691
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
692
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
693
694
695
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
696
697
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
698
699
700
701
702
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


703
704
705
# ###############################################################################


706
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Unknown's avatar
Unknown committed
707
708
                   title='Component', heading='Map Stack', colorbar_label='', fig_mult=(5, 5), pad_mult=(0.1, 0.07),
                   **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
709
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
710
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
711

Chris Smith's avatar
Chris Smith committed
712
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
713
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
714
    map_stack : 3D real numpy array
715
        structured as [component, rows, cols]
716
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
717
718
719
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
720
    color_bar_mode : String, Optional
721
        Options are None, single or each. Default None
Unknown's avatar
Unknown committed
722
723
724
725
    evenly_spaced : bool
        Default False
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
726
727
728
729
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
730
731
    heading : String
        ###Insert description here### Default 'Map Stack'
732
733
    colorbar_label : String
        label for colorbar. Default is an empty string.
734
735
736
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
737
738
739
740
741
742
743
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
744

Chris Smith's avatar
Chris Smith committed
745
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
746
747
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
748
    """
749
750
751
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

752
    num_comps = abs(num_comps)
753
    num_comps = min(num_comps, map_stack.shape[0])
754
755

    if evenly_spaced:
756
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
757
758
759
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

760
761
762
763
764
765
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
766
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
767
768
769
    else:
        if not isinstance(title, str):
            title = 'Component'
770
        title = [title + ' ' + str(x) for x in chosen_pos]
771

772
    fig_h, fig_w = fig_mult
773
774
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
775
    if p_rows * p_cols < num_comps:
776
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
777
778
779
780
781
782
783

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
784
785
786
787

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
Unknown's avatar
Unknown committed
788
        inspec_func = inspect.signature
789
790

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
807
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
808
809
810
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

811
812
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
813
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
814
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
815
816
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
817

818
819
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
820
                      map_stack[index],
821
822
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
823
        if color_bar_mode is 'each':
824
825
            cb = axes202.cbar_axes[count].colorbar(im)
            cb.set_label_text(colorbar_label)
826
    if color_bar_mode is 'single':
827
828
        cb = axes202.cbar_axes[0].colorbar(im)
        cb.set_label_text(colorbar_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
829
830
    return fig202, axes202

831

832
def plot_cluster_h5_group(h5_group, centroids_together=True, cmap=default_cmap):
833
    """
Chris Smith's avatar
Chris Smith committed
834
    Plots the cluster labels and mean response for each cluster
835

Chris Smith's avatar
Chris Smith committed
836
837
838
839
840
841
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot
842
843
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
Chris Smith's avatar
Chris Smith committed
844
845
846
847
848
849
850
851

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
852

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

Unknown's avatar
Unknown committed
873
    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0, None, pos_dims[0]), 1]]
874
875
876
877
878
879
880
881
882
883
884
885
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
886
887

    y_spec_label = get_data_descriptor(h5_mean_resp)
888
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
889

890
891
892
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
893
                                             pos_labels=pos_labels, pos_ticks=pos_ticks, cmap=cmap)
894
895
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
896
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label, cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
897

Unknown's avatar
Unknown committed
898

Somnath, Suhas's avatar
Somnath, Suhas committed
899
###############################################################################
900
901


902
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=default_cmap,
903
904
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
905
    """
906
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
907
908
909
910
911

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
912
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
913
914
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
915
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
916
917
918
919
920
921
922
923
924
925
926
927
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
928
929
930
931
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
932
933
934
935
936
937
938

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
939
    """
940
    cmap = get_cmap_object(cmap)
941
942
943

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
944

945
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
946
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
947
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
948
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
949
950
951
952
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

Unknown's avatar
Unknown committed
953
    if spec_val is None:
Chris Smith's avatar
Chris Smith committed
954
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
955

Chris Smith's avatar
Chris Smith committed
956
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
957
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
958
959
960
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
961
962
        axes = [ax_map, ax_amp, ax_phase]

963
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
964
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
965
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
966
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
967
968
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
969
    else:
Chris Smith's avatar
Chris Smith committed
970
971
972
973
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
974
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
975
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
976
977
978
979
980
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
981
982

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
983
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
984
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
985
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
986
987
988
989
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
990

Chris Smith's avatar
Chris Smith committed
991
    # im = ax_map.imshow(label_mat, interpolation='none')
992
993
994
995
996
997
998
999
1000
1001
1002
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

1003
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
1004
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1005
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
1006
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
1007
    ax_map.axis('tight')"""
1008
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
1009
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
1010
    ax_map.axis('tight')
1011
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
1012
1013
1014
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
1015
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
1016
1017
1018

    return fig, axes

Unknown's avatar
Unknown committed
1019

Somnath, Suhas's avatar
Somnath, Suhas committed
1020
1021
###############################################################################

1022

1023
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4, cmap=default_cmap,
1024
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
1025
    """
1026
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1027

1028
1029
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
1030
1031
1032
1033
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
1034
1035
    max_centroids : unsigned int
                    Number of centroids to plot
1036
1037
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroids
1038
1039
1040
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
1041
1042
1043
1044
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
1045

1046
1047
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
1048
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
1049
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1050

1051
    cmap = get_cmap_object(cmap)
1052

1053
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

1082
    # First plot the labels map:
1083
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0], base_cmap=cmap))
1084
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
1085
1086
    fax1.axis('tight')
    fax1.set_aspect('auto')
1087
    fax1.set_title('Cluster Label Map')
1088
    """im = fax1.imshow(label_mat, interpolation='none')
1089
1090
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1091
1092
1093
1094
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
1095
1096

    # Plot results
1097
1098
1099
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
1100
                    color=cmap(int(255 * index / (cluster_centroids.shape[0] - 1))))
1101
1102
1103
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
1104
            plot_map(ax, cluster_centroids[index])
1105
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
1106
1107

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
1108
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
1109
1110
1111
1112
1113
1114

    return fig501


###############################################################################

1115
1116
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):