be_odf.py 53.6 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
from warnings import warn
12
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
13
14
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
15

16
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
17
    createSpecVals, requires_conjugate, nf32
18
from pyUSID.io.translator import Translator
19
20
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
21
22
23
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
    write_reduced_spec_dsets
from pyUSID.io.usi_data import USIDataset
24
from pyUSID.processing.comp_utils import get_available_memory
25

26

Somnath, Suhas's avatar
Somnath, Suhas committed
27
28
29
30
31
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
32

Chris Smith's avatar
Chris Smith committed
33
34
35
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
36
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Unknown's avatar
Unknown committed
37
38
39
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    @staticmethod
    def is_valid_file(file_path):
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
        file_path : str
            Path to raw data file

        Returns
        -------
        bool : Whether or not this translator can read this file
        """
        file_path = path.abspath(file_path)

        # Check if the data is in the new or old format:
        data_dir, _ = path.split(file_path)
        _, base_name = path.split(data_dir)
        if base_name == 'newdataformat':
            # Though this translator could also read the files but the NDF Translator is more robust...
            return False

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
65
66
67
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
            return False
68
69
70
71
72
73
        if any([x in path_dict.keys() for x in ['parm_txt', 'old_mat_parms',
                                                'read_real', 'write_real']]):
            return True
        else:
            return False

74
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
89
90
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
91
92
93
94
95
96
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
97
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
98
        (folder_path, basename) = path.split(file_path)
99
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
100

Somnath, Suhas's avatar
Somnath, Suhas committed
101
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
102
103
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
104

Somnath, Suhas's avatar
Somnath, Suhas committed
105
        if 'parm_txt' in path_dict.keys():
Unknown's avatar
Unknown committed
106
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
107
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
108
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
109
110
            if parm_dict['VS_steps_per_full_cycle']==0: isBEPS=False
            else: isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
111
        else:
112
            raise IOError('No parameters file found! Cannot translate this dataset!')
Unknown's avatar
Unknown committed
113

Somnath, Suhas's avatar
Somnath, Suhas committed
114
115
116
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
117

Somnath, Suhas's avatar
Somnath, Suhas committed
118
119
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
120

Somnath, Suhas's avatar
Somnath, Suhas committed
121
            if not std_expt:
122
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
123
124
125

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
126
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
127
128
129
130
131
132
133
134
135
136
137
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
138

Somnath, Suhas's avatar
Somnath, Suhas committed
139
140
141
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
142

Somnath, Suhas's avatar
Somnath, Suhas committed
143
144
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
145
146
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
147
148
149
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
150

Somnath, Suhas's avatar
Somnath, Suhas committed
151
152
153
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

154
155
156
157
158
        #Check here if a second channel for current is present
        # Look for the file containing the current data

        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
159
        current_data_exists = False
160
161
162
163
164
165
166
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
167
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
168
169
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
170
171
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
172
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
173
174
175
        check_bins = real_size / ((num_pix - 1) * 4)

        if tot_bins % 1 and check_bins % 1:
176
            raise ValueError('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
177
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
178
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
179
180
181
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
Unknown's avatar
Unknown committed
182
183
184
185
186
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.')
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
187
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
188
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
189
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
190
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
191
        else:
Unknown's avatar
Unknown committed
192
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
193
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
194
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
195
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
196

197
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
198
199
200
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
201

Somnath, Suhas's avatar
Somnath, Suhas committed
202
203
204
205
206
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
207

Somnath, Suhas's avatar
Somnath, Suhas committed
208
        self.FFT_BE_wave = bin_FFT
209

Somnath, Suhas's avatar
Somnath, Suhas committed
210
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
211
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
212
213

            #             Remove the unused plot group columns before proceeding:
Somnath, Suhas's avatar
Somnath, Suhas committed
214
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
215

216
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
217
218
219
220
221

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
222
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
223
224
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
225
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
226

Somnath, Suhas's avatar
Somnath, Suhas committed
227
228
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
229
230
231

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
232
233
234
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
235
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
236
                # UDVS step
237
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
238
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
239
            del stind, step_index
Unknown's avatar
Unknown committed
240

Somnath, Suhas's avatar
Somnath, Suhas committed
241
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
242
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
243
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
244
245
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
246
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
247
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
248
249
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
250

Chris Smith's avatar
Chris Smith committed
251
252
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
253

Somnath, Suhas's avatar
Somnath, Suhas committed
254
255
256
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
257
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
258
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
259

Somnath, Suhas's avatar
Somnath, Suhas committed
260
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
261
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
262
263
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
264
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
265
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
266
267
268

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
269
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
270
271
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
272
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
273
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
274

Somnath, Suhas's avatar
Somnath, Suhas committed
275
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
276
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
277
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
278
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
279
280
281
282
283
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
284
285
286
287
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
288

Somnath, Suhas's avatar
Somnath, Suhas committed
289
290
291
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
292
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
293

294
295
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
296

297
298
        # First create the file
        h5_f = h5py.File(h5_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
299

300
        # Then write root level attributes
301
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
302
303
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
304
305
306
307
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
308

Somnath, Suhas's avatar
Somnath, Suhas committed
309
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
310
311
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
312
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
313
        global_parms['translator'] = 'ODF'
314
        write_simple_attrs(h5_f, global_parms)
315
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
316

317
318
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
319

320
321
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
322

323
324
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
325

326
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
327
328
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
329

330
        # Now the datasets!
Chris Smith's avatar
Chris Smith committed
331
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
332

333
334
335
336
337
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
Chris Smith's avatar
Chris Smith committed
338
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
339
340

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Chris Smith's avatar
Chris Smith committed
341
342
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
343

Chris Smith's avatar
Chris Smith committed
344
345
346
347
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
348
349
350
351
352
353
354
355
356

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
357
            write_simple_attrs(dset, spec_dim_dict)
358
359

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Chris Smith's avatar
Chris Smith committed
360
361
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
377

Chris Smith's avatar
Chris Smith committed
378
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
379

380
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
381
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
382
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
383
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
384

385
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
386
387
388

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
389
390
            self._read_secondary_channel(h5_meas_group, aux_files)

391
        h5_f.close()
Unknown's avatar
Unknown committed
392

Somnath, Suhas's avatar
Somnath, Suhas committed
393
        return h5_path
Chris Smith's avatar
Chris Smith committed
394

395

Chris Smith's avatar
Chris Smith committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
423
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
424
425
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
426
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
427
428
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
429
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
430
431
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
432
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
433
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
434

Somnath, Suhas's avatar
Somnath, Suhas committed
435
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
454

Somnath, Suhas's avatar
Somnath, Suhas committed
455
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
456
457
458
459

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
460
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
461
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
462
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
463
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
464
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
465
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
466
467
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
468
            if 0.5 * udvs_steps % 1:
469
470
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
471
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
472
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
473
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
474
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
475
476
477
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
478
            if step_size % 1:
479
480
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
481
            step_size = int(step_size)
482

483
484
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
485
        take_conjugate = requires_conjugate(rand_spectra)
486

Somnath, Suhas's avatar
Somnath, Suhas committed
487
488
489
490
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
491
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
492
493
494
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
495
496
497
498
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
499
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
500
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
501
502
503
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
504
505
506
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
507
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
508

Somnath, Suhas's avatar
Somnath, Suhas committed
509
510
511
512
513
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
514

Somnath, Suhas's avatar
Somnath, Suhas committed
515
516
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
517
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
518
519
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
520
521
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
522
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
523
524
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
525
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
526
527
528

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
529
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
530
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
531

Somnath, Suhas's avatar
Somnath, Suhas committed
532
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
533
534
535
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
536
        print('---- Finished reading files -----')
537
538

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
539
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
540
541
542
543
544
545
546
547
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
548
549
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
550
        """
Unknown's avatar
Unknown committed
551
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
552

Unknown's avatar
Unknown committed
553
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
554
555

        step_size = self.h5_raw.shape[1] / udvs_steps
556
557
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
558
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
559
        raw_vec = parser.read_all_data()
560
        if take_conjugate:
561
            print('Taking conjugate to ensure positive Quality factors')
562
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
563

Somnath, Suhas's avatar
Somnath, Suhas committed
564
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Unknown's avatar
Unknown committed
565

Somnath, Suhas's avatar
Somnath, Suhas committed
566
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
567
568
569
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
570
        self.h5_raw[:, :] = np.complex64(raw_mat)
571
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
572

Unknown's avatar
Unknown committed
573
574
        print('---- Finished reading files -----')

575
576
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
577
578
579
580
581
582
583
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
584
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
585
586
587
588
589
590
591
592
593
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
594
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
595

596
597
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
598
599
600
601
602
603
604
605
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
606

Somnath, Suhas's avatar
Somnath, Suhas committed
607
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
608
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
609
610
611
612
613
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
614
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
615
616
617
618
619
620
621
622
623
624
625
626
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
627
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
628

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
        print('---- Reading Secondary Channel  ----------')
        if len(aux_file_path)>1:
            print('Detected multiple files, assuming in and out of field')
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

        freq_index = self.h5_raw.spec_dim_labels.index('Frequency')
        num_pix = self.h5_raw.shape[0]
        spectral_len = 1

        for i in range(len(self.h5_raw.spec_dim_sizes)):
            if i == freq_index:
                continue
            spectral_len = spectral_len * self.h5_raw.spec_dim_sizes[i]

        #num_forc_cycles = self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("FORC")]
        #num_dc_steps =  self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("DC_Offset")]

        # create a new channel
        h5_current_channel_group = create_indexed_group(h5_meas_group, 'Channel')

        # Copy attributes from the main channel
        copy_attributes(self.h5_raw.parent, h5_current_channel_group)

        # Modify attributes that are different
        write_simple_attrs(h5_current_channel_group, {'Channel_Input': 'IO_Analog_Input_2',
                                                      'channel_type': 'Current'}, verbose=True)

        #Get the reduced dimensions
        h5_current_spec_inds, h5_current_spec_values = write_reduced_spec_dsets(h5_current_channel_group,
                                                        self.h5_raw.h5_spec_inds,
                                                        self.h5_raw.h5_spec_vals, 'Frequency')


        h5_current_main = write_main_dataset(h5_current_channel_group,  # parent HDF5 group
                                             (num_pix, spectral_len),  # shape of Main dataset
                                             'Raw_Data',  # Name of main dataset
                                             'Current',  # Physical quantity contained in Main dataset
                                             'nA',  # Units for the physical quantity
                                             None,  # Position dimensions
                                             None,  # Spectroscopic dimensions
                                             h5_pos_inds=self.h5_raw.h5_pos_inds,
                                             h5_pos_vals=self.h5_raw.h5_pos_vals,
                                             h5_spec_inds=h5_current_spec_inds,
                                             h5_spec_vals=h5_current_spec_values,
                                             dtype=np.float32,  # data type / precision
                                             main_dset_attrs={'IO_rate': 4E+6, 'Amplifier_Gain': 9})

        # Now calculate the number of positions that can be stored in memory in one go.
        b_per_position = np.float32(0).itemsize * spectral_len

        max_pos_per_read = int(np.floor((get_available_memory()) / b_per_position))

        # if self._verbose:
        print('Allowed to read {} pixels per chunk'.format(max_pos_per_read))

        #Open the read and write files and write them to the hdf5 file
        for aux_file in aux_file_paths:
            if 'write' in aux_file:
                infield = True
            else:
                infield=False

            cur_file = open(aux_file, "rb")

            start_pix = 0

            while start_pix < num_pix:
                end_pix = min(num_pix, start_pix + max_pos_per_read)

                # TODO: Fix for when it won't fit in memory.

                #if max_pos_per_read * b_per_position > num_pix * b_per_position:
                cur_data = np.frombuffer(cur_file.read(), dtype='f')
                #else:
                #cur_data = np.frombuffer(cur_file.read(max_pos_per_read * b_per_position), dtype='f')

                cur_data = cur_data.reshape(end_pix - start_pix, spectral_len//2)

                # Write to h5
                if infield:
                    h5_current_main[start_pix:end_pix, ::2] = cur_data
                else:
                    h5_current_main[start_pix:end_pix, 1::2] = cur_data
                start_pix = end_pix


Somnath, Suhas's avatar
Somnath, Suhas committed
730
731
    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
755
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
756
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
757
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
758
759
760
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
761
762
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
763

Somnath, Suhas's avatar
Somnath, Suhas committed
764
765
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
782
783
784

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
785
786
787
788
789
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
790

Somnath, Suhas's avatar
Somnath, Suhas committed
791
792
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
793
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
794
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
795

Somnath, Suhas's avatar
Somnath, Suhas committed
796
797
798
799
800
801
802
803
804
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
805
806
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
807
808
809
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
810
811
812
813
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
814

Somnath, Suhas's avatar
Somnath, Suhas committed
815
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
816

Somnath, Suhas's avatar
Somnath, Suhas committed
817
818
819
820
821
822
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
823

Somnath, Suhas's avatar
Somnath, Suhas committed
824
825
826
827
828
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
829

Somnath, Suhas's avatar
Somnath, Suhas committed
830
831
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
832

Somnath, Suhas's avatar
Somnath, Suhas committed
833
834
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
835
836
837
838

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
839
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
840

Somnath, Suhas's avatar
Somnath, Suhas committed
841
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
842
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
843
844
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
845
        parm_dict['VS_cycle_phase_shift'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
846
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
847
848
849
850
851
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Unknown's avatar
Unknown committed
852

Somnath, Suhas's avatar
Somnath, Suhas committed
853
854
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Unknown's avatar
Unknown committed
855
856
857
            parm_dict['VS_amplitude_[V]'] = 0.5 * (
                max(dc_amp_vec_full) - min(dc_amp_vec_full))  # SS_max_offset_amplitude
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)
Somnath, Suhas's avatar
Somnath, Suhas committed
858
859
860
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
861
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
862
            parm_dict['VS_offset_[V]'] = 0
Unknown's avatar
Unknown committed
863
            parm_dict['VS_number_of_cycles'] = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
864
865
866
867
868
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
869
870
871
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
872
873
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
874
875
        else:
            parm_dict['VS_mode'] = 'Custom'
Unknown's avatar
Unknown committed
876

Somnath, Suhas's avatar
Somnath, Suhas committed
877
        return parm_dict
Unknown's avatar
Unknown committed
878

Somnath, Suhas's avatar
Somnath, Suhas committed
879
880
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
881
882
883
884
885
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
886
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
887
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
888
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
889
890
891
892
893
894
895
896
897
898
899
900
901
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
902
        if not path.exists(file_path):
903
            raise IOError('NO "More parms" file found')
Somnath, Suhas's avatar
Somnath, Suhas committed
904
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
905
906
907
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
908
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
Unknown's avatar
Unknown committed
909
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1  # From Matlab (base 1) to Python (base 0)
Somnath, Suhas's avatar
Somnath, Suhas committed
910
911
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
912
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Unknown's avatar
Unknown committed
913
        # BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
914
915
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
Unknown's avatar
Unknown committed
916
917
        BE_bin_FFT.imag = -1 * np.imag(FFT_full[BE_bin_ind])

Somnath, Suhas's avatar
Somnath, Suhas committed
918
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
919
920

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Unknown's avatar
Unknown committed
921

Somnath, Suhas's avatar
Somnath, Suhas committed
922
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
Unknown's avatar
Unknown committed
940

Somnath, Suhas's avatar
Somnath, Suhas committed
941
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
942
943
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
944
945
946
947
948
949
950
951
952

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
953
            """
Unknown's avatar
Unknown committed
954

Somnath, Suhas's avatar
Somnath, Suhas committed
955
            if len(strvals) is not len(numvals):
Unknown's avatar
Unknown committed
956
                return None
Somnath, Suhas's avatar
Somnath, Suhas committed
957
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
958
959
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
960
            return None  # not found in list
Unknown's avatar
Unknown committed
961
962

        # % Extract values from parm text file
Unknown's avatar
Unknown committed
963
        BE_signal_type = translate_val(parm_dict['BE_phase_content'],
Unknown's avatar
Unknown committed
964
965
966
                                       ['chirp-sinc hybrid', '1/2 harmonic excitation',
                                        '1/3 harmonic excitation', 'pure sine'],
                                       [1, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
967
968
969
970
971
972
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
Unknown's avatar
Unknown committed
973

Somnath, Suhas's avatar
Somnath, Suhas committed
974
975
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
Unknown's avatar
Unknown committed
976
        # VS_read_voltage = parm_dict['VS_read_voltage_[V]']
Somnath, Suhas's avatar
Somnath, Suhas committed
977
978
        VS_steps = parm_dict['VS_steps_per_full_cycle']
        VS_cycles = parm_dict['VS_number_of_cycles']
Somnath, Suhas's avatar
Somnath, Suhas committed
979
980
981
        VS_fraction = translate_val(parm_dict['VS_cycle_fraction'],
                                    ['full', '1/2', '1/4', '3/4'],
                                    [1., 0.5, 0.25, 0.75])
Somnath, Suhas's avatar
Somnath, Suhas committed
982
983
        VS_shift = parm_dict['VS_cycle_phase_shift']
        if VS_shift is not 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
984
985
986
987
988
989
990
            VS_shift = translate_val(VS_shift, ['1/4', '1/2', '3/4'], [0.25, 0.5, 0.75])
        VS_in_out_cond = translate_val(parm_dict['VS_measure_in_field_loops'],
                                       ['out-of-field', 'in-field', 'in and out-of-field'], [0, 1, 2])
        VS_ACDC_cond = translate_val(parm_dict['VS_mode'],
                                     ['DC modulation mode', 'AC modulation mode with time reversal',
                                      'load user defined VS Wave from file', 'current mode'],
                                     [0, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
991
992
993
994
        self.expt_type = VS_ACDC_cond
        FORC_cycles = parm_dict['FORC_num_of_FORC_cycles']
        FORC_A1 = parm_dict['FORC_V_high1_[V]']
        FORC_A2 = parm_dict['FORC_V_high2_[V]']
Unknown's avatar
Unknown committed
995
        # FORC_repeats = parm_dict['# of FORC repeats']
Somnath, Suhas's avatar
Somnath, Suhas committed
996
997
        FORC_B1 = parm_dict['FORC_V_low1_[V]']
        FORC_B2 = parm_dict['FORC_V_low2_[V]']
Unknown's avatar
Unknown committed
998
999
1000

        # % build vector of voltage spectroscopy values