be_odf.py 71.1 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
20
    createSpecVals, requires_conjugate, generate_bipolar_triangular_waveform, \
    infer_bipolar_triangular_fraction_phase, nf32
21
from pyUSID.io.translator import Translator
22
23
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
24
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
25
    write_reduced_anc_dsets, get_unit_values
26
from pyUSID.io.usi_data import USIDataset
27
from pyUSID.processing.comp_utils import get_available_memory
28

29
30
31
if sys.version_info.major == 3:
    unicode = str

32

Somnath, Suhas's avatar
Somnath, Suhas committed
33
34
35
36
37
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
38

Chris Smith's avatar
Chris Smith committed
39
40
41
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
42
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
43
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
44
45
46
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
47

48
    @staticmethod
49
    def is_valid_file(data_path):
50
51
52
53
54
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
55
        data_path : str
56
57
58
59
            Path to raw data file

        Returns
        -------
60
61
62
63
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
64
        """
65
66
67
68
69
70
71
72
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
73
74
75
76
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
77
78
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
79
80

        # Check if the data is in the new or old format:
81
82
83
84
85
86
87
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
88
            # Though this translator could also read the files but the NDF Translator is more robust...
89
90
91
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
92
93

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
94

95
96
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
97
            return None
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
115
        else:
116
            return None
117

118
119
    def translate(self, file_path, show_plots=True, save_plots=True,
                  do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
134
135
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
136
137
138
139
140
141
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
ssomnath's avatar
ssomnath committed
142
143
        self._verbose = verbose

144
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
145
        (folder_path, basename) = path.split(file_path)
146
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
147

Somnath, Suhas's avatar
Somnath, Suhas committed
148
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
149
150
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
151

Somnath, Suhas's avatar
Somnath, Suhas committed
152
        if 'parm_txt' in path_dict.keys():
ssomnath's avatar
ssomnath committed
153
            if self._verbose:
154
                print('\treading parameters from text file')
Unknown's avatar
Unknown committed
155
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
156
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
157
            if self._verbose:
158
                print('\treading parameters from old mat file')
ssomnath's avatar
ssomnath committed
159
            parm_dict = self._get_parms_from_old_mat(path_dict['old_mat_parms'], verbose=self._verbose)
160
161
162
163
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
164
        else:
165
            raise FileNotFoundError('No parameters file found! Cannot translate this dataset!')
166

ssomnath's avatar
ssomnath committed
167
        if self._verbose:
168
169
            keys = list(parm_dict.keys())
            keys.sort()
170
            print('\tExperiment parameters:')
171
172
173
174
            for key in keys:
                print('\t\t{} : {}'.format(key, parm_dict[key]))

            print('\n\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
175

Somnath, Suhas's avatar
Somnath, Suhas committed
176
177
178
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
179

Somnath, Suhas's avatar
Somnath, Suhas committed
180
181
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
182

Somnath, Suhas's avatar
Somnath, Suhas committed
183
            if not std_expt:
184
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
185
186
187

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
188
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
189
190
191
192
193
194
195
196
197
198
199
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
200

Somnath, Suhas's avatar
Somnath, Suhas committed
201
202
203
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
204

Somnath, Suhas's avatar
Somnath, Suhas committed
205
        # Check file sizes:
ssomnath's avatar
ssomnath committed
206
        if self._verbose:
207
208
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
209
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
210
211
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
212
213
214
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
215

Somnath, Suhas's avatar
Somnath, Suhas committed
216
217
218
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

219
        # Check here if a second channel for current is present
220
221
        # Look for the file containing the current data

ssomnath's avatar
ssomnath committed
222
        if self._verbose:
223
            print('\tLooking for secondary channels')
224
225
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
226
        current_data_exists = False
227
228
229
230
231
232
233
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
234
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
235
236
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
ssomnath's avatar
ssomnath committed
237
        if self._verbose:
238
            print('\tRows: {}, Cols: {}'.format(num_rows, num_cols))
Unknown's avatar
Unknown committed
239
240
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
241
        # Check for case where only a single pixel is missing.
242
243
244
245
        if num_pix == 1:
            check_bins = real_size / (num_pix * 4)
        else:
            check_bins = real_size / ((num_pix - 1) * 4)
Unknown's avatar
Unknown committed
246

ssomnath's avatar
ssomnath committed
247
        if self._verbose:
248
249
250
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
251
        if tot_bins % 1 and check_bins % 1:
252
253
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
254
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
255
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
256
257
258
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
259
260
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
261
262
263
264
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
265
        if 'parm_mat' in path_dict.keys():
ssomnath's avatar
ssomnath committed
266
            if self._verbose:
267
                print('\treading BE arrays from parameters text file')
268
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self._read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
269
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
270
            if self._verbose:
271
                print('\treading BE arrays from old mat text file')
272
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self._read_old_mat_be_vecs(path_dict['old_mat_parms'], verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
273
        else:
ssomnath's avatar
ssomnath committed
274
            if self._verbose:
275
                print('\tGenerating dummy BE arrays')
Unknown's avatar
Unknown committed
276
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
277
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
278
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
279
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
280

281
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
282
283
284
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
285

Somnath, Suhas's avatar
Somnath, Suhas committed
286
287
288
289
290
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
291

Somnath, Suhas's avatar
Somnath, Suhas committed
292
        self.FFT_BE_wave = bin_FFT
293

Somnath, Suhas's avatar
Somnath, Suhas committed
294
        if isBEPS:
ssomnath's avatar
ssomnath committed
295
            if self._verbose:
296
                print('\tBuilding UDVS table for BEPS')
ssomnath's avatar
ssomnath committed
297
            UDVS_labs, UDVS_units, UDVS_mat = self._build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
298

ssomnath's avatar
ssomnath committed
299
            if self._verbose:
300
                print('\tTrimming UDVS table to remove unused plot group columns')
301

302
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
303

304
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
305

306
            # Will assume that all excitation waveforms have same num of bins
Unknown's avatar
Unknown committed
307
308
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps
ssomnath's avatar
ssomnath committed
309
            if self._verbose:
310
311
                print('\t# UDVS steps: {}, # bins/step: {}'
                      ''.format(num_actual_udvs_steps, bins_per_step))
Unknown's avatar
Unknown committed
312

Somnath, Suhas's avatar
Somnath, Suhas committed
313
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
314
315
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
316
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
317

Somnath, Suhas's avatar
Somnath, Suhas committed
318
319
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
320
321
322

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
323
324
325
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
326
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
327
                # UDVS step
328
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
329
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
330
            del stind, step_index
Unknown's avatar
Unknown committed
331

Somnath, Suhas's avatar
Somnath, Suhas committed
332
        else:  # BE Line
ssomnath's avatar
ssomnath committed
333
            if self._verbose:
334
                print('\tPreparing supporting variables since BE-Line')
Somnath, Suhas's avatar
Somnath, Suhas committed
335
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
336
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
337
338
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
339
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
340
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
341
342
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
343

Chris Smith's avatar
Chris Smith committed
344
345
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
346

Somnath, Suhas's avatar
Somnath, Suhas committed
347
348
349
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
350
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
351
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
352

ssomnath's avatar
ssomnath committed
353
        if self._verbose:
354
            print('\tPreparing UDVS slices for region references')
Somnath, Suhas's avatar
Somnath, Suhas committed
355
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
356
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
357
358
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
359
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
360
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
361
362

        if self.expt_type == 2:
ssomnath's avatar
ssomnath committed
363
            if self._verbose:
364
                print('\tExperiment type = 2. Doubling BE vectors')
Unknown's avatar
Unknown committed
365
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
366
367
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
368
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
369
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
370

Somnath, Suhas's avatar
Somnath, Suhas committed
371
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
372
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
ssomnath's avatar
ssomnath committed
373
        if self._verbose:
374
            print('\tCalculating spectroscopic values')
ssomnath's avatar
ssomnath committed
375
376
377
378
        ret_vals = createSpecVals(UDVS_mat, old_spec_inds, bin_freqs,
                                  exec_bin_vec, parm_dict, UDVS_labs,
                                  UDVS_units, verbose=verbose)
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = ret_vals
379

ssomnath's avatar
ssomnath committed
380
        if self._verbose:
381
            print('\t\tspec_vals_labs: {}'.format(spec_vals_labs))
382
383
384
            unit_vals = get_unit_values(spec_inds, spec_vals,
                                        all_dim_names=spec_vals_labs,
                                        is_spec=True, verbose=False)
385
386
387
388
            print('\tUnit spectroscopic values')
            for key, val in unit_vals.items():
                print('\t\t{} : length: {}, values:\n\t\t\t{}'.format(key, len(val), val))

389
390
391
392
        if spec_inds.shape[1] != tot_bins:
            raise ValueError('Second axis of spectroscopic indices: {} not '
                             'matching with second axis of the expected main '
                             'dataset: {}'.format(spec_inds.shape, tot_bins))
393

394
395
396
397
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
398

Somnath, Suhas's avatar
Somnath, Suhas committed
399
400
401
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
402
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
403

404
        if path.exists(h5_path):
ssomnath's avatar
ssomnath committed
405
            if self._verbose:
406
                print('\tRemoving existing / old translated file: ' + h5_path)
407
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
408

409
        # First create the file
ssomnath's avatar
ssomnath committed
410
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
411

412
        # Then write root level attributes
413
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
414
415
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
416
417
418
419
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
420

Somnath, Suhas's avatar
Somnath, Suhas committed
421
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
422
423
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
424
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
425
        global_parms['translator'] = 'ODF'
ssomnath's avatar
ssomnath committed
426
        if self._verbose:
427
            print('\tWriting attributes to HDF5 file root')
428
        write_simple_attrs(h5_f, global_parms)
429
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
430

431
432
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
433

434
        # Write attributes at the measurement group level
ssomnath's avatar
ssomnath committed
435
        if self._verbose:
436
            print('\twriting attributes to Measurement group')
437
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
438

439
440
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
441

442
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
443
444
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
445

446
        # Now the datasets!
ssomnath's avatar
ssomnath committed
447
        if self._verbose:
448
            print('\tCreating ancillary datasets')
Chris Smith's avatar
Chris Smith committed
449
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
450

451
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
ssomnath's avatar
ssomnath committed
452
453
454
        # TODO: Avoid using region references in USID
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=self._verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=False)
455

Chris Smith's avatar
Chris Smith committed
456
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
457

Chris Smith's avatar
Chris Smith committed
458
459
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
460

Chris Smith's avatar
Chris Smith committed
461
462
463
464
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
465

ssomnath's avatar
ssomnath committed
466
        if self._verbose:
467
468
469
470
            print('\tWriting Position datasets')

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)),
                    Dimension('Y', 'm', np.arange(num_rows))]
ssomnath's avatar
ssomnath committed
471
472
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=self._verbose)
        if self._verbose:
473
            print('\tPosition datasets of shape: {}'.format(h5_pos_ind.shape))
474

ssomnath's avatar
ssomnath committed
475
        if self._verbose:
476
            print('\tWriting Spectroscopic datasets of shape: {}'.format(spec_inds.shape))
477
478
479
        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
ssomnath's avatar
ssomnath committed
480
481
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=self._verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=False)
482
            write_simple_attrs(dset, spec_dim_dict)
483
484

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
ssomnath's avatar
ssomnath committed
485
        if self._verbose:
486
            print('\tWriting noise floor dataset')
Chris Smith's avatar
Chris Smith committed
487
488
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
489
490
491
492
493
494
495
496
497
498
499

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
ssomnath's avatar
ssomnath committed
500
        if self._verbose:
501
            print('\tHDF5 dataset will have chunks of size: {}'.format(BEPS_chunks))
502
            print('\tCreating empty main dataset of shape: ({}, {})'.format(num_pix, tot_bins))
503
504
505
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
ssomnath's avatar
ssomnath committed
506
                                         h5_spec_vals=h5_spec_vals, verbose=self._verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
507

ssomnath's avatar
ssomnath committed
508
        if self._verbose:
509
510
            print('\tReading data from binary data files into raw HDF5')
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
511
                        add_pix)
Unknown's avatar
Unknown committed
512

ssomnath's avatar
ssomnath committed
513
        if self._verbose:
514
            print('\tGenerating plot groups')
515
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
516
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
517
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
ssomnath's avatar
ssomnath committed
518
519
                           do_histogram=do_histogram, debug=self._verbose)
        if self._verbose:
520
            print('\tUpgrading to USIDataset')
521
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
522
523
524

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
ssomnath's avatar
ssomnath committed
525
            if self._verbose:
526
                print('\tReading data in secondary channels (current)')
527
            self._read_secondary_channel(h5_meas_group, aux_files,
ssomnath's avatar
ssomnath committed
528
                                         verbose=self._verbose)
529

ssomnath's avatar
ssomnath committed
530
        if self._verbose:
531
            print('\tClosing HDF5 file')
532
        h5_f.close()
Unknown's avatar
Unknown committed
533

Somnath, Suhas's avatar
Somnath, Suhas committed
534
        return h5_path
Chris Smith's avatar
Chris Smith committed
535

536
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
537
                   add_pix):
Chris Smith's avatar
Chris Smith committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
ssomnath's avatar
ssomnath committed
564
            if self._verbose:
565
                print('\t\tReading all raw data for BE-Line in one shot')
566
567
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
568
                                  parm_dict['num_udvs_steps'])
569
570
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
Chris Smith's avatar
Chris Smith committed
571
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
ssomnath's avatar
ssomnath committed
572
            if self._verbose:
573
574
575
                print('\t\tReading all raw BEPS (out-of-field) data at once')
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
576
                                  parm_dict['num_udvs_steps'])
577
578
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'in-field':
Chris Smith's avatar
Chris Smith committed
579
            # Do this for in-field only
ssomnath's avatar
ssomnath committed
580
            if self._verbose:
581
582
583
                print('\t\tReading all raw BEPS (in-field only) data at once')
            self._quick_read_data(path_dict['write_real'],
                                  path_dict['write_imag'],
ssomnath's avatar
ssomnath committed
584
                                  parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
585
586
        else:
            # Large BEPS datasets OR those with in-and-out of field
ssomnath's avatar
ssomnath committed
587
            if self._verbose:
588
589
590
591
592
                print('\t\tReading all raw data for in-and-out-of-field OR '
                      'very large file one pixel at a time')
            self._read_beps_data(path_dict, UDVS_mat.shape[0],
                                 parm_dict['VS_measure_in_field_loops'],
                                 add_pix)
593
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
594

595
    def _read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
614

Somnath, Suhas's avatar
Somnath, Suhas committed
615
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
616
617
618
619

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
620
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
621
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
622
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
623
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
624
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
625
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
626
627
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
628
            if 0.5 * udvs_steps % 1:
629
630
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
631
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
632
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
633
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
634
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
635
636
637
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
638
            if step_size % 1:
639
640
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
641
            step_size = int(step_size)
642

643
644
        rand_spectra = self._get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra)
645
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
646

Somnath, Suhas's avatar
Somnath, Suhas committed
647
648
649
650
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
651
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
652
653
654
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
655
656
657
658
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
659
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
660
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
661
662
663
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
664
665
666
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
667
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
668

Somnath, Suhas's avatar
Somnath, Suhas committed
669
670
671
672
673
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
674

Somnath, Suhas's avatar
Somnath, Suhas committed
675
676
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
677
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
678
679
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
680
681
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
682
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
683
684
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
685
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
686
687
688

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
689
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
690
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
691

Somnath, Suhas's avatar
Somnath, Suhas committed
692
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
693
694
695
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
696
        print('---- Finished reading files -----')
697

ssomnath's avatar
ssomnath committed
698
    def _quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
699
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
700
701
702
703
704
705
706
707
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
708
709
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
710
        """
711
712
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0],
                             self.h5_raw.shape[1] * 4)
713
714

        step_size = self.h5_raw.shape[1] / udvs_steps
715
716
717
718
        rand_spectra = self._get_random_spectra([parser],
                                                self.h5_raw.shape[0],
                                                udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra,
ssomnath's avatar
ssomnath committed
719
720
                                                verbose=self._verbose)
        if self._verbose:
721
            print('\t\t\tChecking if conjugate is required')
722
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
723
        raw_vec = parser.read_all_data()
724
        if take_conjugate:
ssomnath's avatar
ssomnath committed
725
            if self._verbose:
726
                print('\t'*4 + 'Taking conjugate for positive quality factors')
727
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
728

Rama Vasudevan's avatar
Rama Vasudevan committed
729
730
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
731
            warn('Warning! Raw data length {} is not matching placeholder length {}. '
Rama Vasudevan's avatar
Rama Vasudevan committed
732
733
734
735
736
737
738
739
740
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Somnath, Suhas's avatar
Somnath, Suhas committed
741
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
742
743
744
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
745
        self.h5_raw[:, :] = np.complex64(raw_mat)
746
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
747

Unknown's avatar
Unknown committed
748
749
        print('---- Finished reading files -----')

750
751
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
752
753
754
755
756
757
758
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
759
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
760
761
762
763
764
765
766
767
768
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
769
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
770

771
772
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
773
774
775
776
777
778
779
780
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
781

Somnath, Suhas's avatar
Somnath, Suhas committed
782
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
783
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
784
785
786
787
788
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
789
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
790
791
792
793
794
795
796
797
798
799
800
801
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
802
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
803

ssomnath's avatar
ssomnath committed
804
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
805
806
807
808
809
810
811
812
813
814
815
816
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
ssomnath's avatar
ssomnath committed
817
        if self._verbose:
818
            print('\t---------- Reading Secondary Channel  ----------')
819
        if isinstance(aux_file_path, (list, tuple)):
820
821
822
823
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

824
        is_in_out_field = 'Field' in self.h5_raw.spec_dim_labels
825

826
827
828
829
830
831
832
833
834
        if not is_in_out_field and len(aux_file_paths) > 1:
            # TODO: Find a better way to handle this
            warn('\t\tField was not varied but found more than one file for '
                 'secondary channel: {}.\n\t\tResults will be overwritten'
                 ''.format([path.split(item)[-1] for item in aux_file_paths]))
        elif is_in_out_field and len(aux_file_paths) == 1:
            warn('\t\tField was varied but only one data file for secondary'
                 'channel was found. Half the data will be zeros')

835
        spectral_len = 1
836
837
838
        for dim_name, dim_size in zip(self.h5_raw.spec_dim_labels,
                                      self.h5_raw.spec_dim_sizes):
            if dim_name == 'Frequency':
839
                continue
840
            spectral_len = spectral_len * dim_size
841

842
        num_pix = self.h5_raw.shape[0]
ssomnath's avatar
ssomnath committed
843
        if self._verbose:
844
845
846
            print('\t\tExpecting this channel to be of shape: ({}, {})'
                  ''.format(num_pix, spectral_len))
            print('\t\tis_in_out_field: {}'.format(is_in_out_field))
847
848

        # create a new channel
849
850
        h5_current_channel_group = create_indexed_group(h5_meas_group,
                                                        'Channel')
851
852
853