plot_utils.py 45.3 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
merged    
Chris Smith committed
7
from __future__ import division # int/int = float
8
from warnings import warn
9
import os
Chris Smith's avatar
merged    
Chris Smith committed
10
import h5py
11
import scipy
12
import matplotlib.pyplot as plt
13
from matplotlib.colors import LinearSegmentedColormap
14
from mpl_toolkits.axes_grid1 import ImageGrid
15
import numpy as np
16
from ..analysis.utils.be_loop import loop_fit_function
17
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
        color map object that can be used in place of plt.cm.jet
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
80

Chris Smith's avatar
Chris Smith committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def cmap_hot_desaturated():
    hot_desaturated = [(1, (255, 76, 76, 255)),
                       (0.857, (107, 0, 0, 255)),
                       (0.714, (255, 96, 0, 255)),
                       (0.571, (255, 255, 0, 255)),
                       (0.429, (0, 127, 0, 255)),
                       (0.285, (0, 255, 255, 255)),
                       (0.143, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    cdict = {'red': tuple([(dist, colors[0]/255.0, colors[0]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'green': tuple([(dist, colors[1]/255.0, colors[1]/255.0) for (dist, colors) in hot_desaturated][::-1]),
             'blue': tuple([(dist, colors[2]/255.0, colors[2]/255.0) for (dist, colors) in hot_desaturated][::-1])}

    return LinearSegmentedColormap('hot_desaturated', cdict)



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def discrete_cmap(num_bins, base_cmap=plt.cm.jet):
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Discretized color map

    Credits
    -------
    Jake VanderPlas
    License: BSD-style
    """

    base = plt.cm.get_cmap(base_cmap)
    color_list = base(np.linspace(0, 1, num_bins))
    cmap_name = base.name + str(num_bins)
    return base.from_list(cmap_name, color_list, num_bins)

126
127
128

def plot_loop_guess_fit(vdc, ds_proj_loops, ds_guess, ds_fit, title=''):
    """
129
130
131
132
    Plots the loop guess, fit, source projected loops for a single cycle

    Parameters
    ----------
133
    vdc - 1D float numpy array
134
135
        DC offset vector (unshifted)
    ds_proj_loops - 2D numpy array
136
        Projected loops arranged as [position, vdc]
137
138
139
140
141
142
143
144
145
146
147
148
149
    ds_guess - 1D compound numpy array
        Loop guesses arranged as [position]
    ds_fit - 1D compound numpy array
        Loop fits arranged as [position]
    title - (Optional) String / unicode
        Title for the figure

    Returns
    ----------
    fig - matplotlib.pyplot.figure object
        Figure handle
    axes - 2D array of matplotlib.pyplot.axis handles
        handles to axes in the 2d figure
150
151
152
    """
    shift_ind = int(-1 * len(vdc) / 4)
    vdc_shifted = np.roll(vdc, shift_ind)
153
154
155
156
157

    num_plots = np.min([5, int(np.sqrt(ds_proj_loops.shape[0]))])
    fig, axes = plt.subplots(nrows=num_plots, ncols=num_plots, figsize=(18, 18))
    positions = np.linspace(0, ds_proj_loops.shape[0] - 1, num_plots ** 2, dtype=np.int)
    for ax, pos in zip(axes.flat, positions):
158
159
160
        ax.plot(vdc, ds_proj_loops[pos, :], 'k', label='Raw')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_guess[pos]))), 'g', label='guess')
        ax.plot(vdc_shifted, loop_fit_function(vdc_shifted, np.array(list(ds_fit[pos]))), 'r--', label='Fit')
161
162
163
164
165
166
167
168
        ax.set_xlabel('V_DC (V)')
        ax.set_ylabel('PR (a.u.)')
        ax.set_title('Loop ' + str(pos))
    ax.legend()
    fig.suptitle(title)
    fig.tight_layout()

    return fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
169
170
171

###############################################################################

172

173
def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.jet, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
174
175
176
177
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

178
179
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
180
181
182
183
184
185
186
187
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
188
189
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
190
191
    """
    pts_per_step = int(len(ai_vec) / num_steps)
192
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
193
194
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
195
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
196
197
198
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
199
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
200
201
202
203
204
    """
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.jet)
    fig.colorbar(CS3)"""


205
206
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='', cmap=plt.cm.jet,
                     **kwargs):
207
208
209
210
211
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
212
    axis : axis handle
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

236
    for line_ind in range(num_lines):
237
238
239
        axis.plot(x_axis, line_family[line_ind],
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
240
241


242
def plot_map(axis, data, stdevs=2, **kwargs):
243
244
245
246
247
248
249
250
251
252
253
254
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
255

256
257
258
259
260
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
261
262
263
264
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
                     **kwargs)
265
266
    axis.set_aspect('auto')

267
    return im
268

269

270
271
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True, plots_on_side=5, x_label='',
               y_label='', subtitles='Position', title='', central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
272
    """
273
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
274
275
276
277
278

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
279
280
281
282
283
284
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
285
286
287
288
289
290
291
292
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
293
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
308
    if type(datasets) in [h5py.Dataset, np.ndarray]:
309
310
311
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
312
        datasets = [datasets]
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return


    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
350
351

    plots_on_side = min(abs(plots_on_side), 5)
352

Somnath, Suhas's avatar
Somnath, Suhas committed
353
354
355
356
357
358
359
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, figsize=(12, 12))
360
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
361

362
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
363
364
365
366
367
368
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
369
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
370
371

    for count, posn in enumerate(chosen_pos):
372
373
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
374
        else:
375
376
377
            for dataset, col_val in zip(datasets, line_colors):
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind], color=col_val)
        if h5_pos is not None:
Somnath, Suhas's avatar
Somnath, Suhas committed
378
379
380
381
382
383
384
385
386
387
388
389
            # print 'Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0])
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
390
391
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
392
393
394
395
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
396

Somnath, Suhas's avatar
Somnath, Suhas committed
397
398
###############################################################################

399
400

def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
401
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
402
403
404
405
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
406
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
407
408
409
410
411
412
413
414
415
416
417
418
419
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
420
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
421
422
423
424
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

425
    for index in range(num_comps):
426
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
427
428
429
430
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
431
432
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
433
434
435
436
437
438
439
440
441
442
443
444
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

445
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
446
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
447
448
449
450
    Plots the provided spectrograms from SVD V vector

    Parameters:
    -------------
451
452
453
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
454
455
456
457
458
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
459
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
460
461
462
463
464
465
466
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
467
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
468
469
470
471
472
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
473
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
474

475
    for index in range(num_comps):
476
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
477
478
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
479
480
481
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
482
483
484
485
486
487
488
    fig201.tight_layout()

    return fig201, axes201

###############################################################################


489
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
490
    """
491
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
492
493
494

    Parameters:
    -------------
495
496
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
497
498
499
500

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
501
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
502
503
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
504
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
505
506
507
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
508
509
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
510
511
512
513
514
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


515
516
517
# ###############################################################################


518
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False,
Somnath, Suhas's avatar
Somnath, Suhas committed
519
                   title='Component', heading='Map Stack', **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
520
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
521
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
522
523
524

    Parameters:
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
525
    map_stack : 3D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
526
        structured as [rows, cols, component]
527
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
528
529
530
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
531
    color_bar_mode : String, Optional
532
533
534
535
536
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
Somnath, Suhas's avatar
Somnath, Suhas committed
537
538
539
540

    Returns:
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
541
    """
542
543
544
545
546
547
548
549
550
    num_comps = abs(num_comps)
    num_comps = min(num_comps, map_stack.shape[-1])


    if evenly_spaced:
        chosen_pos = np.linspace(0, map_stack.shape[-1] - 1, num_comps, dtype=int)
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

551
552
553
554
555
556
557
558
559
560
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
            title = title + ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
    else:
        if not isinstance(title, str):
            title = 'Component'
561
        title = [title + ' ' + str(x) for x in chosen_pos]
562

563
    fig_h, fig_w = (4, 4)
564
565
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
566
567
    if p_rows*p_cols < num_comps:
        p_cols += 1
568
    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h))
569
570
571
572
573
574
575
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
                        cbar_pad='1%',
                        cbar_size='5%',
                        axes_pad=(0.1*fig_w, 0.07*fig_h))
    # fig202, axes202 = plt.subplots(p_cols, p_rows, figsize=(p_cols * fig_w, p_rows * fig_h))
    # fig202.subplots_adjust(hspace=0.4, wspace=0.4)
Somnath, Suhas's avatar
Somnath, Suhas committed
576
577
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
578

579
580
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
581
                      map_stack[:, :, index],
582
583
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
584
        if color_bar_mode is 'each':
585
            axes202.cbar_axes[count].colorbar(im)
586
587
588

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
589
590
591

    return fig202, axes202

592

593
594
def plot_cluster_h5_group(h5_group, y_spec_label):
    # TODO: The label and units for the main dataset itself are missing in most cases! - ie. I don't know that the data is 'Current' and 'nA'
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)

629
630
631
    plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                  spec_label=x_spec_label, resp_label=y_spec_label,
                                  pos_labels=pos_labels, pos_ticks=pos_ticks)
Somnath, Suhas's avatar
Somnath, Suhas committed
632
633

###############################################################################
634
635


636
637
638
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=plt.cm.jet,
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
639
    """
640
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
641
642
643
644
645

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
646
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
647
648
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
649
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
650
651
652
653
654
655
656
657
658
659
660
661
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
662
663
664
665
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
666
667
668
669
670
671
672

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
673
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
674

675
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
676
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
677
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
678
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
679
680
681
682
683
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
684
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
685

Chris Smith's avatar
Chris Smith committed
686
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
687
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
688
689
690
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
691
692
        axes = [ax_map, ax_amp, ax_phase]

693
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
694
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
695
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
696
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
697
698
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
699
    else:
Chris Smith's avatar
Chris Smith committed
700
701
702
703
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
704
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
705
706
707
708
709
710
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
711
712

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
713
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
714
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
715
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
716
717
718
719
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
720

Chris Smith's avatar
Chris Smith committed
721
    # im = ax_map.imshow(label_mat, interpolation='none')
722
723
724
725
726
727
728
729
730
731
732
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

733
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
734
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
735
736
737
738
739
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    ax_map.axis('tight')"""
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.jet))
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
740
    ax_map.axis('tight')
741
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
742
743
744
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
745
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
746
747
748
749
750

    return fig, axes

###############################################################################

751

752
753
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4,
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
754
    """
755
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
756

757
758
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
759
760
761
762
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
763
764
    max_centroids : unsigned int
                    Number of centroids to plot
765
766
767
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
768
769
770
771
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
772

773
774
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
775
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
776
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
777

778
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

807
    # First plot the labels map:
808
809
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
                                                      base_cmap=plt.cm.jet))
810
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
811
812
    fax1.axis('tight')
    fax1.set_aspect('auto')
813
    fax1.set_title('Cluster Label Map')
814
    """im = fax1.imshow(label_mat, interpolation='none')
815
816
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
817
818
819
820
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
821
822

    # Plot results
823
824
825
826
827
828
829
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
                    color=plt.cm.jet(int(255 * index / (cluster_centroids.shape[0] - 1))))
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
830
            plot_map(ax, cluster_centroids[index])
831
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
832
833

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
834
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
835
836
837
838
839
840

    return fig501


###############################################################################

841
842
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
843
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
844
845
846
847
848
849
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
850
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
851
    e_vals: 3D real numpy array of eigenvalues
852
        structured as [component, rows, cols]
853
    num_comp : int
854
855
856
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
857
    mode: str, optional
858
859
860
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
861
    last: int, optional - should be provided when using "Truncated"
862
863
864
865
866
867
868
869
870
871
872
873
874
875
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
876
877
878

    Returns
    ---------
879
880
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
881
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
        print 'Creating full dendrogram from clusters'
        mode = None
    elif mode == 'Truncated':
        print 'Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last)
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
905
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
906
907
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
908
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
909
910
911
912
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

913
    # Get the distrance between cluster means
914
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
915
916

    # get hierachical pairings of clusters
917
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
918
919
920
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
921
922
923
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
924
925
926
927
928
929
930
931

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


932
def plot_1d_spectrum(data_vec, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
955
956
        warn('plot_1d_spectrum: Incompatible data sizes!!!!')
        print('1D:', data_vec.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
957
        return
958
959
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
960
961
962
963
964
965
966
967
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
968
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
969
970
971
972


###############################################################################

973
def plot_2d_spectrogram(mean_spectrogram, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
996
997
        warn('plot_2d_spectrogram: Incompatible data sizes!!!!')
        print('2D:', mean_spectrogram.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
998
        return
999
1000
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    # print mean_spectrogram.shape
    # print freq.shape
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest',
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0])
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1018
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
1019
1020
1021

###############################################################################

1022
1023

def plot_histgrams(p_hist, p_hbins, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

1087
1088
1089
    return fig


1090
def visualize_sho_results(h5_main, save_plots=True, show_plots=True):
1091
    """
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    Plots some loops, amplitude, phase maps for BE-Line and BEPS datasets.\n
    Note: The file MUST contain SHO fit gusses at the very least

    Parameters
    ----------
    h5_main : HDF5 Dataset
        dataset to be plotted
    save_plots : (Optional) Boolean
        Whether or not to save plots to files in the same directory as the h5 file
    show_plots : (Optional) Boolean
        Whether or not to display the plots on the screen

    Returns
    -------
    None
1107
    """
1108
1109
1110
1111

    def __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, spec_var_title, meas_var_title, save_plots,
                          folder_path, basename, num_rows, num_cols):
        plt_title = grp_name + '_' + win_title + '_Loops'
1112
        fig, ax = plot_loops(ac_vec, resp_mat, evenly_spaced=True, plots_on_side=5, use_rainbow_plots=False,
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
                             x_label=spec_var_title, y_label=meas_var_title, subtitles='Loop', title=plt_title)
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

        plt_title = grp_name + '_' + win_title + '_Snaps'
        fig, axes = plot_map_stack(resp_mat.reshape(num_rows, num_cols, resp_mat.shape[1]),
                                   color_bar_mode="each", evenly_spaced=True, title='UDVS Step #',
                                   heading=plt_title, cmap=cmap_jet_white_center())
        if save_plots:
            fig.savefig(os.path.join(folder_path, basename + '_' + plt_title + '.png'), format='png', dpi=300)

1124
1125
1126
    plt_path = None

    print('Creating plots of SHO Results from {}.'.format(h5_main.name))
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

    h5_file = h5_main.file

    expt_type = h5_file.attrs['data_type']
    if expt_type not in ['BEPSData', 'BELineData']:
        warn('Unsupported data format')
        return
    isBEPS = expt_type == 'BEPSData'

    (folder_path, basename) = os.path.split(h5_file.filename)
    basename, _ = os.path.splitext(basename)

    sho_grp = h5_main.parent
    chan_grp = sho_grp.parent

    grp_name = '_'.join(chan_grp.name[1:].split('/'))
    grp_name = '_'.join([grp_name, sho_grp.name.split('/')[-1].split('-')[0], h5_main.name.split('/')[-1]])

    try:
        h5_pos = h5_file[h5_main.attrs['Position_Indices']]
    except KeyError:
        print('No Position_Indices found as attribute of {}'.format(h5_main.name))
        print('Rows and columns will be calculated from dataset shape.')
        num_rows = int(np.floor((np.sqrt(h5_main.shape[0]))))
        num_cols = int(np.reshape(h5_main, [num_rows, -1, h5_main.shape[1]]).shape[1])
    else:
1153
1154
        num_rows = len(np.unique(h5_pos[:, 0]))
        num_cols = len(np.unique(h5_pos[:, 1]))
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

    try:
        h5_spec_vals = h5_file[h5_main.attrs['Spectroscopic_Values']]
    # except KeyError:
    #     warn('No Spectrosocpic Datasets found as attribute of {}'.format(h5_main.name))
    #     raise
    except:
        raise

    # Assume that there's enough memory to load all the guesses into memory
    amp_mat = h5_main['Amplitude [V]'] * 1000  # convert to mV ahead of time
    freq_mat = h5_main['Frequency [Hz]'] / 1000
    q_mat = h5_main['Quality Factor']
    phase_mat = h5_main['Phase [rad]']
    rsqr_mat = h5_main['R2 Criterion']

    if isBEPS:
        meas_type = chan_grp.parent.attrs['VS_mode']
        # basically 3 kinds for now - DC/current, AC, UD - lets ignore this
        if meas_type == 'load user defined VS Wave from file':
            warn('Not handling custom experiments for now')
            h5_file.close()
            return

        # Plot amplitude and phase maps at one or more UDVS steps

        if meas_type == 'AC modulation mode with time reversal':
            center = int(h5_spec_vals.shape[1] * 0.5)
1183
            ac_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['AC_Amplitude']][0:center])
1184

1185
1186
            forw_resp = np.squeeze(amp_mat[:, slice(0, center)])
            rev_resp = np.squeeze(amp_mat[:, slice(center, None)])
1187
1188
1189
1190

            for win_title, resp_mat in zip(['Forward', 'Reverse'], [forw_resp, rev_resp]):
                __plot_loops_maps(ac_vec, resp_mat, grp_name, win_title, 'AC Amplitude', 'Amplitude', save_plots,
                                  folder_path, basename, num_rows, num_cols)
1191
1192
        else:
            # plot loops at a few locations
1193
            dc_vec = np.squeeze(h5_spec_vals[h5_spec_vals.attrs['DC_Offset']])
1194
1195
            if chan_grp.parent.attrs['VS_measure_in_field_loops'] == 'in and out-of-field':

1196
1197
                dc_vec = np.squeeze(dc_vec[slice(0, None, 2)])

1198
1199
1200
1201
                in_phase = np.squeeze(phase_mat[:, slice(0, None, 2)])
                in_amp = np.squeeze(amp_mat[:, slice(0, None, 2)])
                out_phase = np.squeeze(phase_mat[:, slice(1, None, 2)])
                out_amp = np.squeeze(amp_mat[:, slice(1, None, 2)])
1202
1203
1204
1205

                for win_title, resp_mat in zip(['In_Field', 'Out_of_Field'], [in_phase * in_amp, out_phase * out_amp]):
                    __plot_loops_maps(dc_vec, resp_mat, grp_name, win_title, 'DC Bias', 'Piezoresponse (a.u.)',
                                      save_plots, folder_path, basename, num_rows, num_cols)
1206
            else:
1207
1208
                __plot_loops_maps(dc_vec, phase_mat * amp_mat, grp_name, '', 'DC Bias', 'Piezoresponse (a.u.)',
                                  save_plots, folder_path, basename, num_rows, num_cols)
1209
1210
1211
1212
1213
1214
1215
1216
1217

    else:  # BE-Line can only visualize the amplitude and phase maps:
        amp_mat = amp_mat.reshape(num_rows, num_cols)
        freq_mat = freq_mat.reshape(num_rows, num_cols)
        q_mat = q_mat.reshape(num_rows, num_cols)
        phase_mat = phase_mat.reshape(num_rows, num_cols)
        rsqr_mat = rsqr_mat.reshape(num_rows, num_cols)
        if save_plots:
            plt_path = os.path.join(folder_path, basename + '_' + grp_name + 'Maps.png')
1218
1219
1220
1221
1222
1223

        fig_ms, ax_ms = plot_map_stack(np.dstack((amp_mat, freq_mat, q_mat, phase_mat, rsqr_mat)),
                                       num_comps=5, color_bar_mode='each', heading=grp_name,
                                       title=['Amplitude (mV)', 'Frequency (kHz)', 'Quality Factor', 'Phase (deg)',
                                              'R^2 Criterion'], cmap=cmap_jet_white_center())
        fig_ms.savefig(plt_path, format='png', dpi=300)
1224
1225
1226
1227
1228

    if show_plots:
        plt.show()

    plt.close('all')