be_odf.py 47 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
from warnings import warn
12
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
13
14
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
15

16
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
17
    createSpecVals, requires_conjugate, nf32
18
19
20
from pyUSID.io.translator import Translator, generate_dummy_main_parms
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
21
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs
22

23

Somnath, Suhas's avatar
Somnath, Suhas committed
24
25
26
27
28
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
29

Chris Smith's avatar
Chris Smith committed
30
31
32
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
33
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Unknown's avatar
Unknown committed
34
35
36
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
37

38
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
53
54
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
55
56
57
58
59
60
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
61
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
62
        (folder_path, basename) = path.split(file_path)
63
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
64

Somnath, Suhas's avatar
Somnath, Suhas committed
65
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
66
67
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
68

Somnath, Suhas's avatar
Somnath, Suhas committed
69
        if 'parm_txt' in path_dict.keys():
Unknown's avatar
Unknown committed
70
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
71
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
72
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
73
74
            if parm_dict['VS_steps_per_full_cycle']==0: isBEPS=False
            else: isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
75
        else:
76
            raise IOError('No parameters file found! Cannot translate this dataset!')
Unknown's avatar
Unknown committed
77

Somnath, Suhas's avatar
Somnath, Suhas committed
78
79
80
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
81

Somnath, Suhas's avatar
Somnath, Suhas committed
82
83
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
84

Somnath, Suhas's avatar
Somnath, Suhas committed
85
            if not std_expt:
86
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
87
88
89

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
90
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
91
92
93
94
95
96
97
98
99
100
101
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
102

Somnath, Suhas's avatar
Somnath, Suhas committed
103
104
105
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
106

Somnath, Suhas's avatar
Somnath, Suhas committed
107
108
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
109
110
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
111
112
113
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
114

Somnath, Suhas's avatar
Somnath, Suhas committed
115
116
117
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

Unknown's avatar
Unknown committed
118
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
119
120
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
121
122
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
123
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
124
125
126
        check_bins = real_size / ((num_pix - 1) * 4)

        if tot_bins % 1 and check_bins % 1:
127
            raise ValueError('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
128
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
129
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
130
131
132
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
Unknown's avatar
Unknown committed
133
134
135
136
137
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.')
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
138
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
139
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
140
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
141
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
142
        else:
Unknown's avatar
Unknown committed
143
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
144
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
145
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
146
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
147

148
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
149
150
151
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
154
155
156
157
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
158

Somnath, Suhas's avatar
Somnath, Suhas committed
159
        self.FFT_BE_wave = bin_FFT
160

Somnath, Suhas's avatar
Somnath, Suhas committed
161
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
162
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
163
164

            #             Remove the unused plot group columns before proceeding:
Somnath, Suhas's avatar
Somnath, Suhas committed
165
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
166

167
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
168
169
170
171
172

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
173
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
174
175
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
176
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
177

Somnath, Suhas's avatar
Somnath, Suhas committed
178
179
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
180
181
182

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
183
184
185
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
186
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
187
                # UDVS step
188
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
189
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
190
            del stind, step_index
Unknown's avatar
Unknown committed
191

Somnath, Suhas's avatar
Somnath, Suhas committed
192
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
193
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
194
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
197
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
198
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
201

Chris Smith's avatar
Chris Smith committed
202
203
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
204

Somnath, Suhas's avatar
Somnath, Suhas committed
205
206
207
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
208
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
209

Somnath, Suhas's avatar
Somnath, Suhas committed
210
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
211
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
212
213
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
214
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
215
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
216
217
218

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
219
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
220
221
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
222
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
223
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
224

Somnath, Suhas's avatar
Somnath, Suhas committed
225
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
226
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
227
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
228
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
229
230
231
232
233
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
234
235
236
237
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
238

Somnath, Suhas's avatar
Somnath, Suhas committed
239
        spec_vals_slices = dict()
Unknown's avatar
Unknown committed
240
241
242
        #         if len(spec_vals_labs) == 1:
        #             spec_vals_slices[spec_vals_labs[0]]=(slice(0,1,None),)
        #         else:
Somnath, Suhas's avatar
Somnath, Suhas committed
243
244

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
245
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
246

247
248
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
249

250
251
        # First create the file
        h5_f = h5py.File(h5_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
252

253
        # Then write root level attributes
254
        global_parms = generate_dummy_main_parms()
Somnath, Suhas's avatar
Somnath, Suhas committed
255
256
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
257
258
259
260
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
261

Somnath, Suhas's avatar
Somnath, Suhas committed
262
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
263
264
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
265
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
266
        global_parms['translator'] = 'ODF'
267
        write_simple_attrs(h5_f, global_parms)
268
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
269

270
271
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
272

273
274
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
275

276
277
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
278

279
280
        # Write channel group attributes
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1'})
Unknown's avatar
Unknown committed
281

282
        # Now the datasets!
Chris Smith's avatar
Chris Smith committed
283
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
284

285
286
287
288
289
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
Chris Smith's avatar
Chris Smith committed
290
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
291
292

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Chris Smith's avatar
Chris Smith committed
293
294
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
295

Chris Smith's avatar
Chris Smith committed
296
297
298
299
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
300
301
302
303
304
305
306
307
308

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
309
            write_simple_attrs(dset, spec_dim_dict)
310
311

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Chris Smith's avatar
Chris Smith committed
312
313
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
329

Chris Smith's avatar
Chris Smith committed
330
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
331

332
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
333
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
334
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
335
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
336

337
        h5_f.close()
Unknown's avatar
Unknown committed
338

Somnath, Suhas's avatar
Somnath, Suhas committed
339
        return h5_path
Chris Smith's avatar
Chris Smith committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
368
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
369
370
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
371
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
372
373
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
374
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
375
376
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
377
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
378
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
379

Somnath, Suhas's avatar
Somnath, Suhas committed
380
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
399

Somnath, Suhas's avatar
Somnath, Suhas committed
400
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
401
402
403
404

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
405
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
406
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
407
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
408
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
409
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
410
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
411
412
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
413
            if 0.5 * udvs_steps % 1:
414
415
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
416
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
417
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
418
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
419
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
420
421
422
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
423
            if step_size % 1:
424
425
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
426
            step_size = int(step_size)
427

428
429
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
430
        take_conjugate = requires_conjugate(rand_spectra)
431

Somnath, Suhas's avatar
Somnath, Suhas committed
432
433
434
435
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
436
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
437
438
439
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
440
441
442
443
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
444
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
445
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
446
447
448
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
449
450
451
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
452
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
453

Somnath, Suhas's avatar
Somnath, Suhas committed
454
455
456
457
458
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
459

Somnath, Suhas's avatar
Somnath, Suhas committed
460
461
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
462
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
463
464
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
465
466
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
467
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
468
469
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
470
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
471
472
473

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
474
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
475
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
476

Somnath, Suhas's avatar
Somnath, Suhas committed
477
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
478
479
480
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
481
        print('---- Finished reading files -----')
482
483

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
484
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
485
486
487
488
489
490
491
492
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
493
494
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
495
        """
Unknown's avatar
Unknown committed
496
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
497

Unknown's avatar
Unknown committed
498
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
499
500

        step_size = self.h5_raw.shape[1] / udvs_steps
501
502
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
503
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
504
        raw_vec = parser.read_all_data()
505
        if take_conjugate:
506
            print('Taking conjugate to ensure positive Quality factors')
507
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
508

Somnath, Suhas's avatar
Somnath, Suhas committed
509
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Unknown's avatar
Unknown committed
510

Somnath, Suhas's avatar
Somnath, Suhas committed
511
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
512
513
514
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
515
        self.h5_raw[:, :] = np.complex64(raw_mat)
516
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
517

Unknown's avatar
Unknown committed
518
519
        print('---- Finished reading files -----')

520
    def _parse_file_path(self, data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
521
522
523
524
525
526
527
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
528
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
529
530
531
532
533
534
535
536
537
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
538
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
539

540
541
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
542
543
544
545
546
547
548
549
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
550

Somnath, Suhas's avatar
Somnath, Suhas committed
551
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
552
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
553
554
555
556
557
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
558
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
559
560
561
562
563
564
565
566
567
568
569
570
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
571
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
572
573
574

    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
598
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
599
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
600
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
601
602
603
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
604
605
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
606

Somnath, Suhas's avatar
Somnath, Suhas committed
607
608
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
625
626
627

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
628
629
630
631
632
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
633

Somnath, Suhas's avatar
Somnath, Suhas committed
634
635
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
636
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
637
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
638

Somnath, Suhas's avatar
Somnath, Suhas committed
639
640
641
642
643
644
645
646
647
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
648
649
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
650
651
652
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
653
654
655
656
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
657

Somnath, Suhas's avatar
Somnath, Suhas committed
658
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
659

Somnath, Suhas's avatar
Somnath, Suhas committed
660
661
662
663
664
665
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
666

Somnath, Suhas's avatar
Somnath, Suhas committed
667
668
669
670
671
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
672

Somnath, Suhas's avatar
Somnath, Suhas committed
673
674
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
675

Somnath, Suhas's avatar
Somnath, Suhas committed
676
677
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
678
679
680
681

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
682
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
683

Somnath, Suhas's avatar
Somnath, Suhas committed
684
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
685
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
686
687
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
688
        parm_dict['VS_cycle_phase_shift'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
689
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
690
691
692
693
694
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Unknown's avatar
Unknown committed
695

Somnath, Suhas's avatar
Somnath, Suhas committed
696
697
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Unknown's avatar
Unknown committed
698
699
700
            parm_dict['VS_amplitude_[V]'] = 0.5 * (
                max(dc_amp_vec_full) - min(dc_amp_vec_full))  # SS_max_offset_amplitude
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)
Somnath, Suhas's avatar
Somnath, Suhas committed
701
702
703
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
704
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
705
            parm_dict['VS_offset_[V]'] = 0
Unknown's avatar
Unknown committed
706
            parm_dict['VS_number_of_cycles'] = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
707
708
709
710
711
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
712
713
714
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
715
716
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
717
718
        else:
            parm_dict['VS_mode'] = 'Custom'
Unknown's avatar
Unknown committed
719

Somnath, Suhas's avatar
Somnath, Suhas committed
720
        return parm_dict
Unknown's avatar
Unknown committed
721

Somnath, Suhas's avatar
Somnath, Suhas committed
722
723
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
724
725
726
727
728
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
729
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
730
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
731
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
732
733
734
735
736
737
738
739
740
741
742
743
744
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
745
        if not path.exists(file_path):
746
            raise IOError('NO "More parms" file found')
Somnath, Suhas's avatar
Somnath, Suhas committed
747
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
748
749
750
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
751
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
Unknown's avatar
Unknown committed
752
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1  # From Matlab (base 1) to Python (base 0)
Somnath, Suhas's avatar
Somnath, Suhas committed
753
754
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
755
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Unknown's avatar
Unknown committed
756
        # BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
757
758
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
Unknown's avatar
Unknown committed
759
760
        BE_bin_FFT.imag = -1 * np.imag(FFT_full[BE_bin_ind])

Somnath, Suhas's avatar
Somnath, Suhas committed
761
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
762
763

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Unknown's avatar
Unknown committed
764

Somnath, Suhas's avatar
Somnath, Suhas committed
765
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
Unknown's avatar
Unknown committed
783

Somnath, Suhas's avatar
Somnath, Suhas committed
784
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
785
786
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
787
788
789
790
791
792
793
794
795

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
796
            """
Unknown's avatar
Unknown committed
797

Somnath, Suhas's avatar
Somnath, Suhas committed
798
            if len(strvals) is not len(numvals):
Unknown's avatar
Unknown committed
799
                return None
Somnath, Suhas's avatar
Somnath, Suhas committed
800
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
801
802
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
803
            return None  # not found in list
Unknown's avatar
Unknown committed
804
805

        # % Extract values from parm text file
Unknown's avatar
Unknown committed
806
        BE_signal_type = translate_val(parm_dict['BE_phase_content'],
Unknown's avatar
Unknown committed
807
808
809
                                       ['chirp-sinc hybrid', '1/2 harmonic excitation',
                                        '1/3 harmonic excitation', 'pure sine'],
                                       [1, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
810
811
812
813
814
815
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
Unknown's avatar
Unknown committed
816

Somnath, Suhas's avatar
Somnath, Suhas committed
817
818
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
Unknown's avatar
Unknown committed
819
        # VS_read_voltage = parm_dict['VS_read_voltage_[V]']
Somnath, Suhas's avatar
Somnath, Suhas committed
820
821
        VS_steps = parm_dict['VS_steps_per_full_cycle']
        VS_cycles = parm_dict['VS_number_of_cycles']
Somnath, Suhas's avatar
Somnath, Suhas committed
822
823
824
        VS_fraction = translate_val(parm_dict['VS_cycle_fraction'],
                                    ['full', '1/2', '1/4', '3/4'],
                                    [1., 0.5, 0.25, 0.75])
Somnath, Suhas's avatar
Somnath, Suhas committed
825
826
        VS_shift = parm_dict['VS_cycle_phase_shift']
        if VS_shift is not 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
827
828
829
830
831
832
833
            VS_shift = translate_val(VS_shift, ['1/4', '1/2', '3/4'], [0.25, 0.5, 0.75])
        VS_in_out_cond = translate_val(parm_dict['VS_measure_in_field_loops'],
                                       ['out-of-field', 'in-field', 'in and out-of-field'], [0, 1, 2])
        VS_ACDC_cond = translate_val(parm_dict['VS_mode'],
                                     ['DC modulation mode', 'AC modulation mode with time reversal',
                                      'load user defined VS Wave from file', 'current mode'],
                                     [0, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
834
835
836
837
        self.expt_type = VS_ACDC_cond
        FORC_cycles = parm_dict['FORC_num_of_FORC_cycles']
        FORC_A1 = parm_dict['FORC_V_high1_[V]']
        FORC_A2 = parm_dict['FORC_V_high2_[V]']
Unknown's avatar
Unknown committed
838
        # FORC_repeats = parm_dict['# of FORC repeats']
Somnath, Suhas's avatar
Somnath, Suhas committed
839
840
        FORC_B1 = parm_dict['FORC_V_low1_[V]']
        FORC_B2 = parm_dict['FORC_V_low2_[V]']
Unknown's avatar
Unknown committed
841
842
843

        # % build vector of voltage spectroscopy values

Somnath, Suhas's avatar
Somnath, Suhas committed
844
        if VS_ACDC_cond == 0 or VS_ACDC_cond == 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
845
            VS_amp_vec_1 = np.arange(0, 1 + 1 / (VS_steps / 4), 1 / (VS_steps / 4))
Somnath, Suhas's avatar
Somnath, Suhas committed
846
847
            VS_amp_vec_2 = np.flipud(VS_amp_vec_1[:-1])
            VS_amp_vec_3 = -VS_amp_vec_1[1:]
Unknown's avatar
Unknown committed
848
849
            VS_amp_vec_4 = VS_amp_vec_1[1:-1] - 1
            vs_amp_vec = VS_amp * (np.hstack((VS_amp_vec_1, VS_amp_vec_2, VS_amp_vec_3, VS_amp_vec_4)))
Unknown's avatar
Unknown committed
850
            # apply phase shift to VS wave
Unknown's avatar
Unknown committed
851
            vs_amp_vec = np.roll(vs_amp_vec, int(np.floor(VS_steps / VS_fraction * VS_shift)))
Unknown's avatar
Unknown committed
852
            # cut VS waveform
Unknown's avatar
Unknown committed
853
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps * VS_fraction))]
Unknown's avatar
Unknown committed
854
            # repeat VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
855
            vs_amp_vec = np.tile(vs_amp_vec, int(VS_cycles))
Unknown's avatar
Unknown committed
856
857
            vs_amp_vec = vs_amp_vec + VS_offset

Somnath, Suhas's avatar
Somnath, Suhas committed
858
        elif VS_ACDC_cond == 2:  # AC voltage spectroscopy with time reversal
Unknown's avatar
Unknown committed
859
860
            vs_amp_vec = VS_amp * np.arange(1 / (VS_steps / 2 / VS_fraction), 1 + 1 / (VS_steps / 2 / VS_fraction),
                                            1 / (VS_steps / 2 / VS_fraction))
Somnath, Suhas's avatar
Somnath, Suhas committed
861
            vs_amp_vec = np.roll(vs_amp_vec,
Unknown's avatar
Unknown committed
862
863
                                 int(np.floor(VS_steps / VS_fraction * VS_shift)))  # apply phase shift to VS wave
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps * VS_fraction / 2))]  # cut VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
864
            vs_amp_vec = np.tile(vs_amp_vec, VS_cycles * 2)  # repeat VS waveform
Unknown's avatar
Unknown committed
865

Somnath, Suhas's avatar
Somnath, Suhas committed
866
        if FORC_cycles > 1:
Unknown's avatar
Unknown committed
867
868
869
870
871
872
873
            vs_amp_vec = vs_amp_vec / np.max(np.abs(vs_amp_vec))
            FORC_cycle_vec = np.arange(0, FORC_cycles + 1, FORC_cycles / (FORC_cycles - 1))
            FORC_A_vec = FORC_cycle_vec * (FORC_A2 - FORC_A1) / FORC_cycles + FORC_A1
            FORC_B_vec = FORC_cycle_vec * (FORC_B2 - FORC_B1) / FORC_cycles + FORC_B1
            FORC_amp_vec = (FORC_A_vec - FORC_B_vec) / 2
            FORC_off_vec = (FORC_A_vec + FORC_B_vec) / 2

874
            VS_amp_mat = np.tile(vs_amp_vec, [int(FORC_cycles), 1])
Somnath, Suhas's avatar
Somnath, Suhas committed
875
876
            FORC_amp_mat = np.tile(FORC_amp_vec, [len(vs_amp_vec), 1]).transpose()
            FORC_off_mat = np.tile(FORC_off_vec, [len(vs_amp_vec), 1]).transpose()
Unknown's avatar
Unknown committed
877
878
879
            VS_amp_mat = VS_amp_mat * FORC_amp_mat + FORC_off_mat
            vs_amp_vec = VS_amp_mat.reshape(int(FORC_cycles * VS_cycles * VS_fraction * VS_steps))

Somnath, Suhas's avatar
Somnath, Suhas committed
880
881
        # Build UDVS table:
        if VS_ACDC_cond is 0 or VS_ACDC_cond is 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
882

Somnath, Suhas's avatar
Somnath, Suhas committed
883
            if VS_ACDC_cond is 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
884
                UD_dc_vec = np.vstack((vs_amp_vec, np.zeros(len(vs_amp_vec))))
Somnath, Suhas's avatar
Somnath, Suhas committed
885
            if VS_ACDC_cond is 4:
Somnath, Suhas's avatar
Somnath, Suhas committed
886
                UD_dc_vec = np.vstack((vs_amp_vec, vs_amp_vec))
Unknown's avatar
Unknown committed
887

Somnath, Suhas's avatar
Somnath, Suhas committed
888
            UD_dc_vec = UD_dc_vec.transpose().reshape(UD_dc_vec.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
889
            num_VS_steps = UD_dc_vec.size
Unknown's avatar
Unknown committed
890

Somnath, Suhas's avatar
Somnath, Suhas committed
891
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'in-field', 'out-of-field']
Somnath, Suhas's avatar
Somnath, Suhas committed
892
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'V', 'V']
Somnath, Suhas's avatar
Somnath, Suhas committed
893
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Unknown's avatar
Unknown committed
894

Somnath, Suhas's avatar
Somnath, Suhas committed
895
896
            udvs_table[:, 0] = np.arange(0, num_VS_steps)  # Python base 0
            udvs_table[:, 1] = UD_dc_vec
Unknown's avatar
Unknown committed
897
898
899
900

            BE_IF_switch = np.abs(np.imag(np.exp(1j * np.pi / 2 * np.arange(1, num_VS_steps + 1))))
            BE_OF_switch = np.abs(np.real(np.exp(1j * np.pi / 2 * np.arange(1, num_VS_steps + 1))))

Somnath, Suhas's avatar
Somnath, Suhas committed
901
902
903
904
905
906
            if VS_in_out_cond is 0:  # out of field only
                udvs_table[:, 2] = BE_amp * BE_OF_switch
            elif VS_in_out_cond is 1:  # in field only
                udvs_table[:, 2] = BE_amp * BE_IF_switch
            elif VS_in_out_cond is 2:  # both in and out of field
                udvs_table[:, 2] = BE_amp * np.ones(num_VS_steps)
Unknown's avatar
Unknown committed
907

Somnath, Suhas's avatar
Somnath, Suhas committed
908
909
            udvs_table[:, 3] = np.ones(num_VS_steps)  # wave type
            udvs_table[:, 4] = np.ones(num_VS_steps) * BE_signal_type  # wave mod
Unknown's avatar
Unknown committed
910
911
912
913

            udvs_table[:, 5] = float('NaN') * np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN') * np.ones(num_VS_steps)

Somnath, Suhas's avatar
Somnath, Suhas committed
914
915
            udvs_table[BE_IF_switch == 1, 5] = udvs_table[BE_IF_switch == 1, 1]
            udvs_table[BE_OF_switch == 1, 6] = udvs_table[BE_IF_switch == 1, 1]
Unknown's avatar
Unknown committed
916

Somnath, Suhas's avatar
Somnath, Suhas committed
917
        elif VS_ACDC_cond is 2:  # AC voltage spectroscopy
Unknown's avatar
Unknown committed
918

Somnath, Suhas's avatar
Somnath, Suhas committed
919
            num_VS_steps = vs_amp_vec.size
Unknown's avatar
Unknown committed
920
921
            half = int(0.5 * num_VS_steps)

Somnath, Suhas's avatar
Somnath, Suhas committed
922
            if num_VS_steps is not half * 2:
923
                raise ValueError('Odd number of UDVS steps found. Exiting!')
Unknown's avatar
Unknown committed
924
925

            UD_dc_vec = VS_offset * np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
926
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'forward', 'reverse']
Somnath, Suhas's avatar
Somnath, Suhas committed
927
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'A', 'A']
Somnath, Suhas's avatar
Somnath, Suhas committed
928
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Unknown's avatar
Unknown committed
929
            udvs_table[:, 0] = np.arange(1, num_VS_steps + 1)
Somnath, Suhas's avatar
Somnath, Suhas committed
930
931
932
            udvs_table[:, 1] = UD_dc_vec
            udvs_table[:, 2] = vs_amp_vec
            udvs_table[:, 3] = np.ones(num_VS_steps)
Unknown's avatar
Unknown committed
933
934
935
936
            udvs_table[:half, 4] = BE_signal_type * np.ones(half)
            udvs_table[half:, 4] = -1 * BE_signal_type * np.ones(half)
            udvs_table[:, 5] = float('NaN') * np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN') * np.ones(num_VS_steps)