plot_utils.py 49.2 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
13
import sys
Chris Smith's avatar
merged    
Chris Smith committed
14
import h5py
15
import matplotlib.pyplot as plt
16
17
import numpy as np
import scipy
18
from scipy.signal import blackman
19
from matplotlib.colors import LinearSegmentedColormap
20
from mpl_toolkits.axes_grid1 import ImageGrid
21

22
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
23

24
25
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
26

Somnath, Suhas's avatar
Somnath, Suhas committed
27
default_cmap = plt.cm.viridis
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


def get_cmap_object(cmap):
    """
    Get the matplotlib.colors.LinearSegmentedColormap object regardless of the input

    Parameters
    ----------
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
    Returns
    -------
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Requested / Default colormap object
    """
    if cmap is None:
        return default_cmap
    elif isinstance(cmap, str):
Unknown's avatar
Unknown committed
46
        return plt.get_cmap(cmap)
47
48
49
    return cmap


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
82

83
84
85
86
87
88
89
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
90
        color map object that can be used in place of the default colormap
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
112

Chris Smith's avatar
Chris Smith committed
113

Somnath, Suhas's avatar
Somnath, Suhas committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
Unknown's avatar
Unknown committed
144
                             for (dist, colors) in interp_vals][::-1])}
Somnath, Suhas's avatar
Somnath, Suhas committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
175
176


Somnath, Suhas's avatar
Somnath, Suhas committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
196
197


198
def discrete_cmap(num_bins, base_cmap=default_cmap):
199
200
201
202
203
204
205
206
207
208
209
210
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
211
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
212
213
        Discretized color map

Chris Smith's avatar
Chris Smith committed
214
215
216
217
218
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

219
    """
220
    if base_cmap is None:
221
        base_cmap = default_cmap.name
222

223
    elif isinstance(base_cmap, type(default_cmap)):
224
        base_cmap = base_cmap.name
225

226
227
228
229
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
230

231

Chris Smith's avatar
Chris Smith committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
258

259
260

def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=default_cmap, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
261
262
263
264
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

265
266
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
267
268
269
270
271
272
273
274
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
275
276
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
277
    """
278
279
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
280
    pts_per_step = int(len(ai_vec) / num_steps)
281
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
282
283
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
284
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
285
286
287
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
288
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
289
    """
290
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
291
292
293
    fig.colorbar(CS3)"""


294
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
295
                     cmap=default_cmap, y_offset=0, **kwargs):
296
297
298
299
300
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
301
    axis : axis handle
302
303
304
305
306
307
308
309
310
311
312
313
314
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
315
316
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
317
    """
318
319
    cmap = get_cmap_object(cmap)

320
321
322
323
324
325
326
327
328
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

329
    for line_ind in range(num_lines):
Unknown's avatar
Unknown committed
330
        axis.plot(x_axis, line_family[line_ind] + line_ind * y_offset,
331
332
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
333
334


Chris Smith's avatar
Chris Smith committed
335
def plot_map(axis, data, stdevs=2, origin='lower', **kwargs):
336
337
338
339
340
341
342
343
344
345
346
347
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
Chris Smith's avatar
Chris Smith committed
348
349
350
351
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
352

353
354
355
356
357
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
358
359
360
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
361
                     origin=origin,
362
                     **kwargs)
363
364
    axis.set_aspect('auto')

365
    return im
366

367

Unknown's avatar
Unknown committed
368
369
370
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True,
               plots_on_side=5, x_label='', y_label='', subtitles='Position', title='',
               central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
371
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
372
    """
373
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
374
375
376
377
378

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
379
380
381
382
383
384
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
385
386
387
388
389
390
391
392
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
393
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
408
    if type(datasets) in [h5py.Dataset, np.ndarray]:
409
410
411
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
412
        datasets = [datasets]
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return

    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
449
450

    plots_on_side = min(abs(plots_on_side), 5)
451

Somnath, Suhas's avatar
Somnath, Suhas committed
452
453
454
455
456
457
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

458
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
459
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
460

461
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
462
463
464
465
466
467
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
468
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
469
470

    for count, posn in enumerate(chosen_pos):
471
472
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
473
        else:
474
            for dataset, col_val in zip(datasets, line_colors):
Unknown's avatar
Unknown committed
475
476
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind],
                                     color=col_val)
477
        if h5_pos is not None:
478
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
479
480
481
482
483
484
485
486
487
488
489
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
490
491
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
492
493
494
495
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
496

Unknown's avatar
Unknown committed
497

Somnath, Suhas's avatar
Somnath, Suhas committed
498
499
###############################################################################

500

501
502
def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2,
                           cmap=default_cmap):
Somnath, Suhas's avatar
Somnath, Suhas committed
503
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
504
505
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
506
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
507
    -------------
508
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
509
510
511
512
513
514
515
516
517
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting
518
519
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
Somnath, Suhas's avatar
Somnath, Suhas committed
520

Chris Smith's avatar
Chris Smith committed
521
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
522
523
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
524
    """
525
526
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
527
528
529
530
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

531
    for index in range(num_comps):
532
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
533
534
535
536
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
537
538
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
539
            ax.imshow(func(cur_map), cmap=cmap,
Somnath, Suhas's avatar
Somnath, Suhas committed
540
541
542
543
544
545
546
547
548
549
550
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

551
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
552
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
553
554
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
555
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
556
    -------------
557
558
559
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
560
561
562
563
564
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
565
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
566
567
568
569
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

Chris Smith's avatar
Chris Smith committed
570
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
571
572
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
573
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
574
575
576
577
578
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
579
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
580

581
    for index in range(num_comps):
582
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
583
584
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
585
586
587
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
588
589
590
591
    fig201.tight_layout()

    return fig201, axes201

Unknown's avatar
Unknown committed
592

Somnath, Suhas's avatar
Somnath, Suhas committed
593
594
595
###############################################################################


596
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
597
    """
598
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
599

Chris Smith's avatar
Chris Smith committed
600
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
601
    -------------
602
603
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
604

Chris Smith's avatar
Chris Smith committed
605
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
606
607
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
608
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
609
610
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
611
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
612
613
614
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
615
616
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
617
618
619
620
621
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


622
623
624
# ###############################################################################


625
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Chris Smith's avatar
Chris Smith committed
626
                   title='Component', heading='Map Stack', fig_mult=(4, 4), pad_mult=(0.1, 0.07), **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
627
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
628
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
629

Chris Smith's avatar
Chris Smith committed
630
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
631
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
632
    map_stack : 3D real numpy array
633
        structured as [component, rows, cols]
634
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
635
636
637
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
638
    color_bar_mode : String, Optional
639
640
641
642
643
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
644
645
646
647
648
    heading : String
        ###Insert description here### Default 'Map Stack'
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
649
650
651
652
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
653
654
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
Chris Smith's avatar
Chris Smith committed
655
656
657
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
658

Chris Smith's avatar
Chris Smith committed
659
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
660
661
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
662
    """
663
664
665
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

666
    num_comps = abs(num_comps)
667
    num_comps = min(num_comps, map_stack.shape[0])
668
669

    if evenly_spaced:
670
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
671
672
673
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

674
675
676
677
678
679
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
680
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
681
682
683
    else:
        if not isinstance(title, str):
            title = 'Component'
684
        title = [title + ' ' + str(x) for x in chosen_pos]
685

686
    fig_h, fig_w = fig_mult
687
688
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
689
    if p_rows * p_cols < num_comps:
690
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
691
692
693
694
695
696
697

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
698
699
700
701

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
Unknown's avatar
Unknown committed
702
        inspec_func = inspect.signature
703
704

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
721
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
722
723
724
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

725
726
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
727
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
728
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
729
730
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
731

732
733
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
734
                      map_stack[index],
735
736
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
737
        if color_bar_mode is 'each':
738
            axes202.cbar_axes[count].colorbar(im)
739
740
741

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
742
743
744

    return fig202, axes202

745

746
def plot_cluster_h5_group(h5_group, centroids_together=True, cmap=default_cmap):
747
    """
Chris Smith's avatar
Chris Smith committed
748
    Plots the cluster labels and mean response for each cluster
749

Chris Smith's avatar
Chris Smith committed
750
751
752
753
754
755
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot
756
757
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
Chris Smith's avatar
Chris Smith committed
758
759
760
761
762
763
764
765

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
766

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

Unknown's avatar
Unknown committed
787
    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0, None, pos_dims[0]), 1]]
788
789
790
791
792
793
794
795
796
797
798
799
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
800
801

    y_spec_label = get_data_descriptor(h5_mean_resp)
802
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
803

804
805
806
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
807
                                             pos_labels=pos_labels, pos_ticks=pos_ticks, cmap=cmap)
808
809
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
810
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label, cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
811

Unknown's avatar
Unknown committed
812

Somnath, Suhas's avatar
Somnath, Suhas committed
813
###############################################################################
814
815


816
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=default_cmap,
817
818
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
819
    """
820
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
821
822
823
824
825

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
826
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
827
828
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
829
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
830
831
832
833
834
835
836
837
838
839
840
841
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
842
843
844
845
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
846
847
848
849
850
851
852

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
853
    """
854
    cmap = get_cmap_object(cmap)
855
856
857

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
858

859
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
860
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
861
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
862
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
863
864
865
866
867
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
868
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
869

Chris Smith's avatar
Chris Smith committed
870
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
871
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
872
873
874
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
875
876
        axes = [ax_map, ax_amp, ax_phase]

877
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
878
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
879
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
880
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
881
882
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
883
    else:
Chris Smith's avatar
Chris Smith committed
884
885
886
887
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
888
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
889
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
890
891
892
893
894
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
895
896

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
897
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
898
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
899
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
900
901
902
903
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
904

Chris Smith's avatar
Chris Smith committed
905
    # im = ax_map.imshow(label_mat, interpolation='none')
906
907
908
909
910
911
912
913
914
915
916
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

917
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
918
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
919
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
920
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
921
    ax_map.axis('tight')"""
922
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
923
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
924
    ax_map.axis('tight')
925
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
926
927
928
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
929
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
930
931
932

    return fig, axes

Unknown's avatar
Unknown committed
933

Somnath, Suhas's avatar
Somnath, Suhas committed
934
935
###############################################################################

936

937
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4, cmap=default_cmap,
938
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
939
    """
940
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
941

942
943
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
944
945
946
947
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
948
949
    max_centroids : unsigned int
                    Number of centroids to plot
950
951
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroids
952
953
954
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
955
956
957
958
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
959

960
961
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
962
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
963
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
964

965
    cmap = get_cmap_object(cmap)
966

967
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

996
    # First plot the labels map:
997
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0], base_cmap=cmap))
998
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
999
1000
    fax1.axis('tight')
    fax1.set_aspect('auto')
1001
    fax1.set_title('Cluster Label Map')
1002
    """im = fax1.imshow(label_mat, interpolation='none')
1003
1004
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1005
1006
1007
1008
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
1009
1010

    # Plot results
1011
1012
1013
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
1014
                    color=cmap(int(255 * index / (cluster_centroids.shape[0] - 1))))
1015
1016
1017
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
1018
            plot_map(ax, cluster_centroids[index])
1019
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
1020
1021

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
1022
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
1023
1024
1025
1026
1027
1028

    return fig501


###############################################################################

1029
1030
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
1031
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1032
1033
1034
1035
1036
1037
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
1038
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1039
    e_vals: 3D real numpy array of eigenvalues
1040
        structured as [component, rows, cols]
1041
    num_comp : int
1042
1043
1044
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
1045
    mode: str, optional
1046
1047
1048
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
1049
    last: int, optional - should be provided when using "Truncated"
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
1064
1065
1066

    Returns
    ---------
1067
1068
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
1069
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1070
1071
1072
1073
1074
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
1075
        print('Creating full dendrogram from clusters')
Somnath, Suhas's avatar
Somnath, Suhas committed
1076
1077
        mode = None
    elif mode == 'Truncated':
1078
        print('Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last))
Somnath, Suhas's avatar
Somnath, Suhas committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
1093
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
1094
1095
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
1096
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
1097
1098
1099
1100
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

1101
    # Get the distrance between cluster means
1102
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
1103
1104

    # get hierachical pairings of clusters
1105
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
1106
1107
1108
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
Chris Smith's avatar