be_odf.py 54.3 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
from warnings import warn
13
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
14
15
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
16

17
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
18
    createSpecVals, requires_conjugate, nf32
19
from pyUSID.io.translator import Translator
20
21
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
22
23
24
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
    write_reduced_spec_dsets
from pyUSID.io.usi_data import USIDataset
25
from pyUSID.processing.comp_utils import get_available_memory
26

27
28
29
if sys.version_info.major == 3:
    unicode = str

30

Somnath, Suhas's avatar
Somnath, Suhas committed
31
32
33
34
35
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
36

Chris Smith's avatar
Chris Smith committed
37
38
39
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
40
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Unknown's avatar
Unknown committed
41
42
43
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
44

45
    @staticmethod
46
    def is_valid_file(data_path):
47
48
49
50
51
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
52
        data_path : str
53
54
55
56
            Path to raw data file

        Returns
        -------
57
58
59
60
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
61
        """
62
63
64
65
66
67
68
69
70
71
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
72
73

        # Check if the data is in the new or old format:
74
75
76
77
78
79
80
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
81
            # Though this translator could also read the files but the NDF Translator is more robust...
82
83
84
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
85
86

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
87

88
89
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
90
            return None
91
        if any([x in path_dict.keys() for x in ['parm_txt', 'old_mat_parms',
92
93
                                                'read_real', 'read_imag']]):
            return path_dict['parm_txt']
94
        else:
95
            return None
96

97
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
112
113
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
114
115
116
117
118
119
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
120
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
121
        (folder_path, basename) = path.split(file_path)
122
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
123

Somnath, Suhas's avatar
Somnath, Suhas committed
124
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
125
126
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
127

Somnath, Suhas's avatar
Somnath, Suhas committed
128
        if 'parm_txt' in path_dict.keys():
Unknown's avatar
Unknown committed
129
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
130
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
131
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
132
133
            if parm_dict['VS_steps_per_full_cycle']==0: isBEPS=False
            else: isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
134
        else:
135
            raise IOError('No parameters file found! Cannot translate this dataset!')
Unknown's avatar
Unknown committed
136

Somnath, Suhas's avatar
Somnath, Suhas committed
137
138
139
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
140

Somnath, Suhas's avatar
Somnath, Suhas committed
141
142
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
143

Somnath, Suhas's avatar
Somnath, Suhas committed
144
            if not std_expt:
145
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
146
147
148

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
149
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
150
151
152
153
154
155
156
157
158
159
160
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
161

Somnath, Suhas's avatar
Somnath, Suhas committed
162
163
164
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
165

Somnath, Suhas's avatar
Somnath, Suhas committed
166
167
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
168
169
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
170
171
172
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
173

Somnath, Suhas's avatar
Somnath, Suhas committed
174
175
176
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

177
178
179
180
181
        #Check here if a second channel for current is present
        # Look for the file containing the current data

        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
182
        current_data_exists = False
183
184
185
186
187
188
189
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
190
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
191
192
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
193
194
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
195
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
196
197
198
        check_bins = real_size / ((num_pix - 1) * 4)

        if tot_bins % 1 and check_bins % 1:
199
            raise ValueError('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
200
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
201
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
202
203
204
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
Unknown's avatar
Unknown committed
205
206
207
208
209
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.')
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
210
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
211
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
212
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
213
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
214
        else:
Unknown's avatar
Unknown committed
215
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
216
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
217
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
218
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
219

220
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
221
222
223
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
224

Somnath, Suhas's avatar
Somnath, Suhas committed
225
226
227
228
229
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
230

Somnath, Suhas's avatar
Somnath, Suhas committed
231
        self.FFT_BE_wave = bin_FFT
232

Somnath, Suhas's avatar
Somnath, Suhas committed
233
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
234
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
235
236

            #             Remove the unused plot group columns before proceeding:
Somnath, Suhas's avatar
Somnath, Suhas committed
237
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
238

239
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
240
241
242
243
244

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
245
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
246
247
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
248
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
249

Somnath, Suhas's avatar
Somnath, Suhas committed
250
251
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
252
253
254

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
255
256
257
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
258
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
259
                # UDVS step
260
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
261
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
262
            del stind, step_index
Unknown's avatar
Unknown committed
263

Somnath, Suhas's avatar
Somnath, Suhas committed
264
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
265
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
266
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
267
268
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
269
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
270
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
271
272
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
273

Chris Smith's avatar
Chris Smith committed
274
275
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
276

Somnath, Suhas's avatar
Somnath, Suhas committed
277
278
279
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
280
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
281
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
282

Somnath, Suhas's avatar
Somnath, Suhas committed
283
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
284
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
285
286
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
287
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
288
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
289
290
291

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
292
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
293
294
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
295
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
296
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
297

Somnath, Suhas's avatar
Somnath, Suhas committed
298
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
299
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
300
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
301
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
302
303
304
305
306
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
307
308
309
310
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
311

Somnath, Suhas's avatar
Somnath, Suhas committed
312
313
314
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
315
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
316

317
318
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
319

320
321
        # First create the file
        h5_f = h5py.File(h5_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
322

323
        # Then write root level attributes
324
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
325
326
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
327
328
329
330
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
331

Somnath, Suhas's avatar
Somnath, Suhas committed
332
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
333
334
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
335
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
336
        global_parms['translator'] = 'ODF'
337
        write_simple_attrs(h5_f, global_parms)
338
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
339

340
341
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
342

343
344
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
345

346
347
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
348

349
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
350
351
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
352

353
        # Now the datasets!
Chris Smith's avatar
Chris Smith committed
354
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
355

356
357
358
359
360
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
Chris Smith's avatar
Chris Smith committed
361
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
362
363

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Chris Smith's avatar
Chris Smith committed
364
365
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
366

Chris Smith's avatar
Chris Smith committed
367
368
369
370
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
371
372
373
374
375
376
377
378
379

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
380
            write_simple_attrs(dset, spec_dim_dict)
381
382

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Chris Smith's avatar
Chris Smith committed
383
384
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
400

Chris Smith's avatar
Chris Smith committed
401
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
402

403
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
404
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
405
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
406
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
407

408
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
409
410
411

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
412
413
            self._read_secondary_channel(h5_meas_group, aux_files)

414
        h5_f.close()
Unknown's avatar
Unknown committed
415

Somnath, Suhas's avatar
Somnath, Suhas committed
416
        return h5_path
Chris Smith's avatar
Chris Smith committed
417

418

Chris Smith's avatar
Chris Smith committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
446
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
447
448
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
449
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
450
451
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
452
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
453
454
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
455
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
456
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
457

Somnath, Suhas's avatar
Somnath, Suhas committed
458
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
477

Somnath, Suhas's avatar
Somnath, Suhas committed
478
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
479
480
481
482

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
483
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
484
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
485
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
486
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
487
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
488
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
489
490
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
491
            if 0.5 * udvs_steps % 1:
492
493
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
494
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
495
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
496
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
497
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
498
499
500
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
501
            if step_size % 1:
502
503
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
504
            step_size = int(step_size)
505

506
507
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
508
        take_conjugate = requires_conjugate(rand_spectra)
509

Somnath, Suhas's avatar
Somnath, Suhas committed
510
511
512
513
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
514
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
515
516
517
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
518
519
520
521
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
522
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
523
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
524
525
526
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
527
528
529
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
530
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
531

Somnath, Suhas's avatar
Somnath, Suhas committed
532
533
534
535
536
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
537

Somnath, Suhas's avatar
Somnath, Suhas committed
538
539
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
540
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
541
542
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
543
544
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
545
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
546
547
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
548
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
549
550
551

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
552
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
553
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
554

Somnath, Suhas's avatar
Somnath, Suhas committed
555
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
556
557
558
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
559
        print('---- Finished reading files -----')
560
561

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
562
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
563
564
565
566
567
568
569
570
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
571
572
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
573
        """
Unknown's avatar
Unknown committed
574
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
575

Unknown's avatar
Unknown committed
576
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
577
578

        step_size = self.h5_raw.shape[1] / udvs_steps
579
580
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
581
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
582
        raw_vec = parser.read_all_data()
583
        if take_conjugate:
584
            print('Taking conjugate to ensure positive Quality factors')
585
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
586

Somnath, Suhas's avatar
Somnath, Suhas committed
587
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Unknown's avatar
Unknown committed
588

Somnath, Suhas's avatar
Somnath, Suhas committed
589
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
590
591
592
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
593
        self.h5_raw[:, :] = np.complex64(raw_mat)
594
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
595

Unknown's avatar
Unknown committed
596
597
        print('---- Finished reading files -----')

598
599
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
600
601
602
603
604
605
606
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
607
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
608
609
610
611
612
613
614
615
616
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
617
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
618

619
620
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
621
622
623
624
625
626
627
628
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
629

Somnath, Suhas's avatar
Somnath, Suhas committed
630
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
631
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
632
633
634
635
636
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
637
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
638
639
640
641
642
643
644
645
646
647
648
649
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
650
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
651

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
        print('---- Reading Secondary Channel  ----------')
        if len(aux_file_path)>1:
            print('Detected multiple files, assuming in and out of field')
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

        freq_index = self.h5_raw.spec_dim_labels.index('Frequency')
        num_pix = self.h5_raw.shape[0]
        spectral_len = 1

        for i in range(len(self.h5_raw.spec_dim_sizes)):
            if i == freq_index:
                continue
            spectral_len = spectral_len * self.h5_raw.spec_dim_sizes[i]

        #num_forc_cycles = self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("FORC")]
        #num_dc_steps =  self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("DC_Offset")]

        # create a new channel
        h5_current_channel_group = create_indexed_group(h5_meas_group, 'Channel')

        # Copy attributes from the main channel
        copy_attributes(self.h5_raw.parent, h5_current_channel_group)

        # Modify attributes that are different
        write_simple_attrs(h5_current_channel_group, {'Channel_Input': 'IO_Analog_Input_2',
                                                      'channel_type': 'Current'}, verbose=True)

        #Get the reduced dimensions
        h5_current_spec_inds, h5_current_spec_values = write_reduced_spec_dsets(h5_current_channel_group,
                                                        self.h5_raw.h5_spec_inds,
                                                        self.h5_raw.h5_spec_vals, 'Frequency')


        h5_current_main = write_main_dataset(h5_current_channel_group,  # parent HDF5 group
                                             (num_pix, spectral_len),  # shape of Main dataset
                                             'Raw_Data',  # Name of main dataset
                                             'Current',  # Physical quantity contained in Main dataset
                                             'nA',  # Units for the physical quantity
                                             None,  # Position dimensions
                                             None,  # Spectroscopic dimensions
                                             h5_pos_inds=self.h5_raw.h5_pos_inds,
                                             h5_pos_vals=self.h5_raw.h5_pos_vals,
                                             h5_spec_inds=h5_current_spec_inds,
                                             h5_spec_vals=h5_current_spec_values,
                                             dtype=np.float32,  # data type / precision
                                             main_dset_attrs={'IO_rate': 4E+6, 'Amplifier_Gain': 9})

        # Now calculate the number of positions that can be stored in memory in one go.
        b_per_position = np.float32(0).itemsize * spectral_len

        max_pos_per_read = int(np.floor((get_available_memory()) / b_per_position))

        # if self._verbose:
        print('Allowed to read {} pixels per chunk'.format(max_pos_per_read))

        #Open the read and write files and write them to the hdf5 file
        for aux_file in aux_file_paths:
            if 'write' in aux_file:
                infield = True
            else:
                infield=False

            cur_file = open(aux_file, "rb")

            start_pix = 0

            while start_pix < num_pix:
                end_pix = min(num_pix, start_pix + max_pos_per_read)

                # TODO: Fix for when it won't fit in memory.

                #if max_pos_per_read * b_per_position > num_pix * b_per_position:
                cur_data = np.frombuffer(cur_file.read(), dtype='f')
                #else:
                #cur_data = np.frombuffer(cur_file.read(max_pos_per_read * b_per_position), dtype='f')

                cur_data = cur_data.reshape(end_pix - start_pix, spectral_len//2)

                # Write to h5
                if infield:
                    h5_current_main[start_pix:end_pix, ::2] = cur_data
                else:
                    h5_current_main[start_pix:end_pix, 1::2] = cur_data
                start_pix = end_pix


Somnath, Suhas's avatar
Somnath, Suhas committed
753
754
    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
778
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
779
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
780
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
781
782
783
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
784
785
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
786

Somnath, Suhas's avatar
Somnath, Suhas committed
787
788
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
805
806
807

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
808
809
810
811
812
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
813

Somnath, Suhas's avatar
Somnath, Suhas committed
814
815
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
816
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
817
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
818

Somnath, Suhas's avatar
Somnath, Suhas committed
819
820
821
822
823
824
825
826
827
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
828
829
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
830
831
832
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
833
834
835
836
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
837

Somnath, Suhas's avatar
Somnath, Suhas committed
838
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
839

Somnath, Suhas's avatar
Somnath, Suhas committed
840
841
842
843
844
845
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
846

Somnath, Suhas's avatar
Somnath, Suhas committed
847
848
849
850
851
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
852

Somnath, Suhas's avatar
Somnath, Suhas committed
853
854
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
855

Somnath, Suhas's avatar
Somnath, Suhas committed
856
857
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
858
859
860
861

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
862
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
863

Somnath, Suhas's avatar
Somnath, Suhas committed
864
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
865
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
866
867
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
868
        parm_dict['VS_cycle_phase_shift'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
869
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
870
871
872
873
874
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Unknown's avatar
Unknown committed
875

Somnath, Suhas's avatar
Somnath, Suhas committed
876
877
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Unknown's avatar
Unknown committed
878
879
880
            parm_dict['VS_amplitude_[V]'] = 0.5 * (
                max(dc_amp_vec_full) - min(dc_amp_vec_full))  # SS_max_offset_amplitude
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)
Somnath, Suhas's avatar
Somnath, Suhas committed
881
882
883
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
884
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
885
            parm_dict['VS_offset_[V]'] = 0
Unknown's avatar
Unknown committed
886
            parm_dict['VS_number_of_cycles'] = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
887
888
889
890
891
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
892
893
894
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
895
896
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
897
898
        else:
            parm_dict['VS_mode'] = 'Custom'
Unknown's avatar
Unknown committed
899

Somnath, Suhas's avatar
Somnath, Suhas committed
900
        return parm_dict
Unknown's avatar
Unknown committed
901

Somnath, Suhas's avatar
Somnath, Suhas committed
902
903
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
904
905
906
907
908
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
909
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
910
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
911
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
912
913
914
915
916
917
918
919
920
921
922
923
924
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
925
        if not path.exists(file_path):
926
            raise IOError('NO "More parms" file found')
Somnath, Suhas's avatar
Somnath, Suhas committed
927
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
928
929
930
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
931
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
Unknown's avatar
Unknown committed
932
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1  # From Matlab (base 1) to Python (base 0)
Somnath, Suhas's avatar
Somnath, Suhas committed
933
934
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
935
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Unknown's avatar
Unknown committed
936
        # BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
937
938
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
Unknown's avatar
Unknown committed
939
940
        BE_bin_FFT.imag = -1 * np.imag(FFT_full[BE_bin_ind])

Somnath, Suhas's avatar
Somnath, Suhas committed
941
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
942
943

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Unknown's avatar
Unknown committed
944

Somnath, Suhas's avatar
Somnath, Suhas committed
945
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
Unknown's avatar
Unknown committed
963

Somnath, Suhas's avatar
Somnath, Suhas committed
964
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
965
966
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
967
968
969
970
971
972
973
974
975

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
976
            """
Unknown's avatar
Unknown committed
977

Somnath, Suhas's avatar
Somnath, Suhas committed
978
            if len(strvals) is not len(numvals):
Unknown's avatar
Unknown committed
979
                return None
Somnath, Suhas's avatar
Somnath, Suhas committed
980
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
981
982
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
983
            return None  # not found in list
Unknown's avatar
Unknown committed
984
985

        # % Extract values from parm text file
Unknown's avatar
Unknown committed
986
        BE_signal_type = translate_val(parm_dict['BE_phase_content'],
Unknown's avatar
Unknown committed
987
988
989
                                       ['chirp-sinc hybrid', '1/2 harmonic excitation',
                                        '1/3 harmonic excitation', 'pure sine'],
                                       [1, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
990
991
992
993
994
995
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
Unknown's avatar
Unknown committed
996

Somnath, Suhas's avatar
Somnath, Suhas committed
997
998
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
Unknown's avatar
Unknown committed
999
        # VS_read_voltage = parm_dict['VS_read_voltage_[V]']
Somnath, Suhas's avatar
Somnath, Suhas committed
1000
        VS_steps = parm_dict['VS_steps_per_full_cycle']