be_odf.py 53.4 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
from warnings import warn
12
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
13
14
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
15

16
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
17
    createSpecVals, requires_conjugate, nf32
18
19
20
from pyUSID.io.translator import Translator, generate_dummy_main_parms
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
21
22
23
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
    write_reduced_spec_dsets
from pyUSID.io.usi_data import USIDataset
24
from pyUSID.processing.comp_utils import get_available_memory
25

26

Somnath, Suhas's avatar
Somnath, Suhas committed
27
28
29
30
31
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
32

Chris Smith's avatar
Chris Smith committed
33
34
35
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
36
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Unknown's avatar
Unknown committed
37
38
39
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    @staticmethod
    def is_valid_file(file_path):
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
        file_path : str
            Path to raw data file

        Returns
        -------
        bool : Whether or not this translator can read this file
        """
        file_path = path.abspath(file_path)

        # Check if the data is in the new or old format:
        data_dir, _ = path.split(file_path)
        _, base_name = path.split(data_dir)
        if base_name == 'newdataformat':
            # Though this translator could also read the files but the NDF Translator is more robust...
            return False

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
        if any([x in path_dict.keys() for x in ['parm_txt', 'old_mat_parms',
                                                'read_real', 'write_real']]):
            return True
        else:
            return False

71
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
86
87
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
88
89
90
91
92
93
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
94
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
95
        (folder_path, basename) = path.split(file_path)
96
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
97

Somnath, Suhas's avatar
Somnath, Suhas committed
98
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
99
100
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
101

Somnath, Suhas's avatar
Somnath, Suhas committed
102
        if 'parm_txt' in path_dict.keys():
Unknown's avatar
Unknown committed
103
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
104
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
105
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
106
107
            if parm_dict['VS_steps_per_full_cycle']==0: isBEPS=False
            else: isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
108
        else:
109
            raise IOError('No parameters file found! Cannot translate this dataset!')
Unknown's avatar
Unknown committed
110

Somnath, Suhas's avatar
Somnath, Suhas committed
111
112
113
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
114

Somnath, Suhas's avatar
Somnath, Suhas committed
115
116
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
117

Somnath, Suhas's avatar
Somnath, Suhas committed
118
            if not std_expt:
119
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
120
121
122

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
123
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
124
125
126
127
128
129
130
131
132
133
134
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
135

Somnath, Suhas's avatar
Somnath, Suhas committed
136
137
138
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
139

Somnath, Suhas's avatar
Somnath, Suhas committed
140
141
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
142
143
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
144
145
146
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
147

Somnath, Suhas's avatar
Somnath, Suhas committed
148
149
150
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

151
152
153
154
155
        #Check here if a second channel for current is present
        # Look for the file containing the current data

        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
156
        current_data_exists = False
157
158
159
160
161
162
163
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
164
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
165
166
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
167
168
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
169
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
170
171
172
        check_bins = real_size / ((num_pix - 1) * 4)

        if tot_bins % 1 and check_bins % 1:
173
            raise ValueError('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
174
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
175
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
176
177
178
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
Unknown's avatar
Unknown committed
179
180
181
182
183
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.')
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
184
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
185
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
186
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
187
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
188
        else:
Unknown's avatar
Unknown committed
189
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
190
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
191
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
192
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
193

194
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
195
196
197
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
198

Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
201
202
203
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
204

Somnath, Suhas's avatar
Somnath, Suhas committed
205
        self.FFT_BE_wave = bin_FFT
206

Somnath, Suhas's avatar
Somnath, Suhas committed
207
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
208
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
209
210

            #             Remove the unused plot group columns before proceeding:
Somnath, Suhas's avatar
Somnath, Suhas committed
211
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
212

213
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
214
215
216
217
218

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
219
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
220
221
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
222
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
223

Somnath, Suhas's avatar
Somnath, Suhas committed
224
225
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
226
227
228

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
229
230
231
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
232
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
233
                # UDVS step
234
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
235
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
236
            del stind, step_index
Unknown's avatar
Unknown committed
237

Somnath, Suhas's avatar
Somnath, Suhas committed
238
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
239
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
240
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
241
242
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
243
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
244
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
245
246
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
247

Chris Smith's avatar
Chris Smith committed
248
249
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
250

Somnath, Suhas's avatar
Somnath, Suhas committed
251
252
253
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
254
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
255
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
256

Somnath, Suhas's avatar
Somnath, Suhas committed
257
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
258
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
259
260
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
261
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
262
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
263
264
265

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
266
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
267
268
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
269
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
270
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
271

Somnath, Suhas's avatar
Somnath, Suhas committed
272
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
273
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
274
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
275
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
276
277
278
279
280
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
281
282
283
284
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
285

Somnath, Suhas's avatar
Somnath, Suhas committed
286
287
288
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
289
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
290

291
292
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
293

294
295
        # First create the file
        h5_f = h5py.File(h5_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
296

297
        # Then write root level attributes
298
        global_parms = generate_dummy_main_parms()
Somnath, Suhas's avatar
Somnath, Suhas committed
299
300
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
301
302
303
304
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
305

Somnath, Suhas's avatar
Somnath, Suhas committed
306
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
307
308
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
309
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
310
        global_parms['translator'] = 'ODF'
311
        write_simple_attrs(h5_f, global_parms)
312
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
313

314
315
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
316

317
318
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
319

320
321
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
322

323
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
324
325
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
326

327
        # Now the datasets!
Chris Smith's avatar
Chris Smith committed
328
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
329

330
331
332
333
334
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
Chris Smith's avatar
Chris Smith committed
335
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
336
337

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Chris Smith's avatar
Chris Smith committed
338
339
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
340

Chris Smith's avatar
Chris Smith committed
341
342
343
344
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
345
346
347
348
349
350
351
352
353

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
354
            write_simple_attrs(dset, spec_dim_dict)
355
356

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Chris Smith's avatar
Chris Smith committed
357
358
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
374

Chris Smith's avatar
Chris Smith committed
375
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
376

377
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
378
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
379
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
380
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
381

382
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
383
384
385

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
386
387
            self._read_secondary_channel(h5_meas_group, aux_files)

388
        h5_f.close()
Unknown's avatar
Unknown committed
389

Somnath, Suhas's avatar
Somnath, Suhas committed
390
        return h5_path
Chris Smith's avatar
Chris Smith committed
391

392

Chris Smith's avatar
Chris Smith committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
420
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
421
422
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
423
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
424
425
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
426
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
427
428
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
429
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
430
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
431

Somnath, Suhas's avatar
Somnath, Suhas committed
432
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
451

Somnath, Suhas's avatar
Somnath, Suhas committed
452
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
453
454
455
456

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
457
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
458
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
459
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
460
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
461
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
462
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
463
464
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
465
            if 0.5 * udvs_steps % 1:
466
467
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
468
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
469
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
470
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
471
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
472
473
474
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
475
            if step_size % 1:
476
477
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
478
            step_size = int(step_size)
479

480
481
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
482
        take_conjugate = requires_conjugate(rand_spectra)
483

Somnath, Suhas's avatar
Somnath, Suhas committed
484
485
486
487
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
488
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
489
490
491
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
492
493
494
495
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
496
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
497
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
498
499
500
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
501
502
503
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
504
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
505

Somnath, Suhas's avatar
Somnath, Suhas committed
506
507
508
509
510
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
511

Somnath, Suhas's avatar
Somnath, Suhas committed
512
513
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
514
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
515
516
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
517
518
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
519
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
520
521
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
522
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
523
524
525

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
526
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
527
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
528

Somnath, Suhas's avatar
Somnath, Suhas committed
529
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
530
531
532
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
533
        print('---- Finished reading files -----')
534
535

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
536
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
537
538
539
540
541
542
543
544
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
545
546
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
547
        """
Unknown's avatar
Unknown committed
548
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
549

Unknown's avatar
Unknown committed
550
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
551
552

        step_size = self.h5_raw.shape[1] / udvs_steps
553
554
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
555
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
556
        raw_vec = parser.read_all_data()
557
        if take_conjugate:
558
            print('Taking conjugate to ensure positive Quality factors')
559
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
560

Somnath, Suhas's avatar
Somnath, Suhas committed
561
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Unknown's avatar
Unknown committed
562

Somnath, Suhas's avatar
Somnath, Suhas committed
563
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
564
565
566
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
567
        self.h5_raw[:, :] = np.complex64(raw_mat)
568
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
569

Unknown's avatar
Unknown committed
570
571
        print('---- Finished reading files -----')

572
573
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
574
575
576
577
578
579
580
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
581
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
582
583
584
585
586
587
588
589
590
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
591
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
592

593
594
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
595
596
597
598
599
600
601
602
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
603

Somnath, Suhas's avatar
Somnath, Suhas committed
604
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
605
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
606
607
608
609
610
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
611
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
612
613
614
615
616
617
618
619
620
621
622
623
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
624
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
625

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
        print('---- Reading Secondary Channel  ----------')
        if len(aux_file_path)>1:
            print('Detected multiple files, assuming in and out of field')
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

        freq_index = self.h5_raw.spec_dim_labels.index('Frequency')
        num_pix = self.h5_raw.shape[0]
        spectral_len = 1

        for i in range(len(self.h5_raw.spec_dim_sizes)):
            if i == freq_index:
                continue
            spectral_len = spectral_len * self.h5_raw.spec_dim_sizes[i]

        #num_forc_cycles = self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("FORC")]
        #num_dc_steps =  self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("DC_Offset")]

        # create a new channel
        h5_current_channel_group = create_indexed_group(h5_meas_group, 'Channel')

        # Copy attributes from the main channel
        copy_attributes(self.h5_raw.parent, h5_current_channel_group)

        # Modify attributes that are different
        write_simple_attrs(h5_current_channel_group, {'Channel_Input': 'IO_Analog_Input_2',
                                                      'channel_type': 'Current'}, verbose=True)

        #Get the reduced dimensions
        h5_current_spec_inds, h5_current_spec_values = write_reduced_spec_dsets(h5_current_channel_group,
                                                        self.h5_raw.h5_spec_inds,
                                                        self.h5_raw.h5_spec_vals, 'Frequency')


        h5_current_main = write_main_dataset(h5_current_channel_group,  # parent HDF5 group
                                             (num_pix, spectral_len),  # shape of Main dataset
                                             'Raw_Data',  # Name of main dataset
                                             'Current',  # Physical quantity contained in Main dataset
                                             'nA',  # Units for the physical quantity
                                             None,  # Position dimensions
                                             None,  # Spectroscopic dimensions
                                             h5_pos_inds=self.h5_raw.h5_pos_inds,
                                             h5_pos_vals=self.h5_raw.h5_pos_vals,
                                             h5_spec_inds=h5_current_spec_inds,
                                             h5_spec_vals=h5_current_spec_values,
                                             dtype=np.float32,  # data type / precision
                                             main_dset_attrs={'IO_rate': 4E+6, 'Amplifier_Gain': 9})

        # Now calculate the number of positions that can be stored in memory in one go.
        b_per_position = np.float32(0).itemsize * spectral_len

        max_pos_per_read = int(np.floor((get_available_memory()) / b_per_position))

        # if self._verbose:
        print('Allowed to read {} pixels per chunk'.format(max_pos_per_read))

        #Open the read and write files and write them to the hdf5 file
        for aux_file in aux_file_paths:
            if 'write' in aux_file:
                infield = True
            else:
                infield=False

            cur_file = open(aux_file, "rb")

            start_pix = 0

            while start_pix < num_pix:
                end_pix = min(num_pix, start_pix + max_pos_per_read)

                # TODO: Fix for when it won't fit in memory.

                #if max_pos_per_read * b_per_position > num_pix * b_per_position:
                cur_data = np.frombuffer(cur_file.read(), dtype='f')
                #else:
                #cur_data = np.frombuffer(cur_file.read(max_pos_per_read * b_per_position), dtype='f')

                cur_data = cur_data.reshape(end_pix - start_pix, spectral_len//2)

                # Write to h5
                if infield:
                    h5_current_main[start_pix:end_pix, ::2] = cur_data
                else:
                    h5_current_main[start_pix:end_pix, 1::2] = cur_data
                start_pix = end_pix


Somnath, Suhas's avatar
Somnath, Suhas committed
727
728
    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
752
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
753
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
754
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
755
756
757
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
758
759
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
760

Somnath, Suhas's avatar
Somnath, Suhas committed
761
762
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
779
780
781

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
782
783
784
785
786
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
787

Somnath, Suhas's avatar
Somnath, Suhas committed
788
789
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
790
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
791
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
792

Somnath, Suhas's avatar
Somnath, Suhas committed
793
794
795
796
797
798
799
800
801
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
802
803
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
804
805
806
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
807
808
809
810
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
811

Somnath, Suhas's avatar
Somnath, Suhas committed
812
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
813

Somnath, Suhas's avatar
Somnath, Suhas committed
814
815
816
817
818
819
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
820

Somnath, Suhas's avatar
Somnath, Suhas committed
821
822
823
824
825
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
826

Somnath, Suhas's avatar
Somnath, Suhas committed
827
828
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
829

Somnath, Suhas's avatar
Somnath, Suhas committed
830
831
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
832
833
834
835

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
836
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
837

Somnath, Suhas's avatar
Somnath, Suhas committed
838
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
839
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
840
841
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
842
        parm_dict['VS_cycle_phase_shift'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
843
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
844
845
846
847
848
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Unknown's avatar
Unknown committed
849

Somnath, Suhas's avatar
Somnath, Suhas committed
850
851
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Unknown's avatar
Unknown committed
852
853
854
            parm_dict['VS_amplitude_[V]'] = 0.5 * (
                max(dc_amp_vec_full) - min(dc_amp_vec_full))  # SS_max_offset_amplitude
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)
Somnath, Suhas's avatar
Somnath, Suhas committed
855
856
857
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
858
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
859
            parm_dict['VS_offset_[V]'] = 0
Unknown's avatar
Unknown committed
860
            parm_dict['VS_number_of_cycles'] = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
861
862
863
864
865
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
866
867
868
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
869
870
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
871
872
        else:
            parm_dict['VS_mode'] = 'Custom'
Unknown's avatar
Unknown committed
873

Somnath, Suhas's avatar
Somnath, Suhas committed
874
        return parm_dict
Unknown's avatar
Unknown committed
875

Somnath, Suhas's avatar
Somnath, Suhas committed
876
877
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
878
879
880
881
882
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
883
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
884
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
885
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
886
887
888
889
890
891
892
893
894
895
896
897
898
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
899
        if not path.exists(file_path):
900
            raise IOError('NO "More parms" file found')
Somnath, Suhas's avatar
Somnath, Suhas committed
901
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
902
903
904
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
905
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
Unknown's avatar
Unknown committed
906
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1  # From Matlab (base 1) to Python (base 0)
Somnath, Suhas's avatar
Somnath, Suhas committed
907
908
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
909
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Unknown's avatar
Unknown committed
910
        # BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
911
912
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
Unknown's avatar
Unknown committed
913
914
        BE_bin_FFT.imag = -1 * np.imag(FFT_full[BE_bin_ind])

Somnath, Suhas's avatar
Somnath, Suhas committed
915
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
916
917

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Unknown's avatar
Unknown committed
918

Somnath, Suhas's avatar
Somnath, Suhas committed
919
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
Unknown's avatar
Unknown committed
937

Somnath, Suhas's avatar
Somnath, Suhas committed
938
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
939
940
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
941
942
943
944
945
946
947
948
949

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
950
            """
Unknown's avatar
Unknown committed
951

Somnath, Suhas's avatar
Somnath, Suhas committed
952
            if len(strvals) is not len(numvals):
Unknown's avatar
Unknown committed
953
                return None
Somnath, Suhas's avatar
Somnath, Suhas committed
954
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
955
956
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
957
            return None  # not found in list
Unknown's avatar
Unknown committed
958
959

        # % Extract values from parm text file
Unknown's avatar
Unknown committed
960
        BE_signal_type = translate_val(parm_dict['BE_phase_content'],
Unknown's avatar
Unknown committed
961
962
963
                                       ['chirp-sinc hybrid', '1/2 harmonic excitation',
                                        '1/3 harmonic excitation', 'pure sine'],
                                       [1, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
964
965
966
967
968
969
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
Unknown's avatar
Unknown committed
970

Somnath, Suhas's avatar
Somnath, Suhas committed
971
972
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
Unknown's avatar
Unknown committed
973
        # VS_read_voltage = parm_dict['VS_read_voltage_[V]']
Somnath, Suhas's avatar
Somnath, Suhas committed
974
975
        VS_steps = parm_dict['VS_steps_per_full_cycle']
        VS_cycles = parm_dict['VS_number_of_cycles']
Somnath, Suhas's avatar
Somnath, Suhas committed
976
977
978
        VS_fraction = translate_val(parm_dict['VS_cycle_fraction'],
                                    ['full', '1/2', '1/4', '3/4'],
                                    [1., 0.5, 0.25, 0.75])
Somnath, Suhas's avatar
Somnath, Suhas committed
979
980
        VS_shift = parm_dict['VS_cycle_phase_shift']
        if VS_shift is not 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
981
982
983
984
985
986
987
            VS_shift = translate_val(VS_shift, ['1/4', '1/2', '3/4'], [0.25, 0.5, 0.75])
        VS_in_out_cond = translate_val(parm_dict['VS_measure_in_field_loops'],
                                       ['out-of-field', 'in-field', 'in and out-of-field'], [0, 1, 2])
        VS_ACDC_cond = translate_val(parm_dict['VS_mode'],
                                     ['DC modulation mode', 'AC modulation mode with time reversal',
                                      'load user defined VS Wave from file', 'current mode'],
                                     [0, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
988
989
990
991
        self.expt_type = VS_ACDC_cond
        FORC_cycles = parm_dict['FORC_num_of_FORC_cycles']
        FORC_A1 = parm_dict['FORC_V_high1_[V]']
        FORC_A2 = parm_dict['FORC_V_high2_[V]']
Unknown's avatar
Unknown committed
992
        # FORC_repeats = parm_dict['# of FORC repeats']
Somnath, Suhas's avatar
Somnath, Suhas committed
993
994
        FORC_B1 = parm_dict['FORC_V_low1_[V]']
        FORC_B2 = parm_dict['FORC_V_low2_[V]']
Unknown's avatar
Unknown committed
995
996
997

        # % build vector of voltage spectroscopy values

Somnath, Suhas's avatar
Somnath, Suhas committed
998
        if VS_ACDC_cond == 0 or VS_ACDC_cond == 4:  # DC voltage spectroscopy or current mode
Unknown's avatar
Unknown committed
999
            VS_amp_vec_1 = np.arange(0, 1 + 1 / (VS_steps / 4), 1 / (VS_steps / 4))
Somnath, Suhas's avatar
Somnath, Suhas committed
1000
            VS_amp_vec_2 = np.flipud(VS_amp_vec_1[:-1])