be_odf.py 74.8 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
20
    createSpecVals, requires_conjugate, generate_bipolar_triangular_waveform, \
    infer_bipolar_triangular_fraction_phase, nf32
21
from pyUSID.io.translator import Translator
22
23
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
24
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
25
    write_reduced_anc_dsets, get_unit_values
26
from pyUSID.io.usi_data import USIDataset
27
from pyUSID.processing.comp_utils import get_available_memory
28

29
30
31
if sys.version_info.major == 3:
    unicode = str

32

Somnath, Suhas's avatar
Somnath, Suhas committed
33
34
35
36
37
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
38

Chris Smith's avatar
Chris Smith committed
39
40
41
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
42
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
43
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
44
45
46
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
47
        self._verbose = False
Chris Smith's avatar
Chris Smith committed
48

49
    @staticmethod
50
    def is_valid_file(data_path):
51
52
53
54
55
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
56
        data_path : str
57
58
59
60
            Path to raw data file

        Returns
        -------
61
62
63
64
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
65
        """
66
67
68
69
70
71
72
73
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
74
75
76
77
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
78
79
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
80
81

        # Check if the data is in the new or old format:
82
83
84
85
86
87
88
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
89
            # Though this translator could also read the files but the NDF Translator is more robust...
90
91
92
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
93
94

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
95

96
97
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
98
            return None
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
116
        else:
117
            return None
118

119
120
    def translate(self, file_path, show_plots=True, save_plots=True,
                  do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
135
136
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
137
138
139
140
141
142
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
ssomnath's avatar
ssomnath committed
143
144
        self._verbose = verbose

145
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
146
        (folder_path, basename) = path.split(file_path)
147
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
148

Somnath, Suhas's avatar
Somnath, Suhas committed
149
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
150
151
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
        if 'parm_txt' in path_dict.keys():
ssomnath's avatar
ssomnath committed
154
            if self._verbose:
155
                print('\treading parameters from text file')
ssomnath's avatar
ssomnath committed
156
157
            isBEPS, parm_dict = parmsToDict(path_dict['parm_txt'])

Somnath, Suhas's avatar
Somnath, Suhas committed
158
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
159
            if self._verbose:
160
                print('\treading parameters from old mat file')
ssomnath's avatar
ssomnath committed
161
            parm_dict = self._get_parms_from_old_mat(path_dict['old_mat_parms'], verbose=self._verbose)
162
163
164
165
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
166
        else:
ssomnath's avatar
ssomnath committed
167
168
            raise FileNotFoundError('No parameters file found! Cannot '
                                    'translate this dataset!')
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        # Initial text / mat files named some parameters differently
        if parm_dict['VS_mode'] == 'AC modulation mode':
            warn('Updating parameter "VS_mode" from invalid value'
                 ' of "AC modulation mode" to "AC modulation mode with '
                 'time reversal"')
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
        if parm_dict['BE_phase_content'] == 'chirp':
            warn('Updating parameter "BE_phase_content" from older value'
                 ' of "chirp" to "chirp-sinc hybrid"')
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        if parm_dict['BE_amplitude_[V]'] < 1E-2:
            new_val = 0.5151
            warn('Updating parameter "BE_amplitude_[V]" from invalid value'
                 ' of {} to {}'.format(parm_dict['BE_amplitude_[V]'],
                                       new_val))
            parm_dict['BE_amplitude_[V]'] = new_val
186
187
        if 'VS_amplitude_[V]' in parm_dict.keys():
            if parm_dict['VS_amplitude_[V]'] < 1E-2:
188
                new_val = 1
189
190
                warn('Updating parameter "VS_amplitude_[V]" from invalid value'
                     ' of {} to {}'.format(parm_dict['VS_amplitude_[V]'],
191
                                           new_val))
192
                parm_dict['VS_amplitude_[V]'] = new_val
193

ssomnath's avatar
ssomnath committed
194
        if self._verbose:
195
196
            keys = list(parm_dict.keys())
            keys.sort()
197
            print('\tExperiment parameters:')
198
199
200
201
            for key in keys:
                print('\t\t{} : {}'.format(key, parm_dict[key]))

            print('\n\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
202

Somnath, Suhas's avatar
Somnath, Suhas committed
203
204
205
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
206

Somnath, Suhas's avatar
Somnath, Suhas committed
207
208
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
209

Somnath, Suhas's avatar
Somnath, Suhas committed
210
            if not std_expt:
211
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
212
213
214

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
215
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
216
217
218
219
220
221
222
223
224
225
226
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
227

Somnath, Suhas's avatar
Somnath, Suhas committed
228
229
230
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
231

Somnath, Suhas's avatar
Somnath, Suhas committed
232
        # Check file sizes:
ssomnath's avatar
ssomnath committed
233
        if self._verbose:
234
235
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
236
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
237
238
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
239
240
241
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
242

Somnath, Suhas's avatar
Somnath, Suhas committed
243
        if real_size != imag_size:
ssomnath's avatar
ssomnath committed
244
245
246
247
            raise ValueError("Real and imaginary file sizes do not match!")

        if real_size == 0:
            raise ValueError('Real and imaginary files were empty')
Somnath, Suhas's avatar
Somnath, Suhas committed
248

249
        # Check here if a second channel for current is present
250
251
        # Look for the file containing the current data

ssomnath's avatar
ssomnath committed
252
        if self._verbose:
253
            print('\tLooking for secondary channels')
254
255
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
256
        current_data_exists = False
257
258
259
260
261
262
263
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
264
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
265
266
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
ssomnath's avatar
ssomnath committed
267
        if self._verbose:
268
            print('\tRows: {}, Cols: {}'.format(num_rows, num_cols))
Unknown's avatar
Unknown committed
269
270
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
271
        # Check for case where only a single pixel is missing.
272
273
274
275
        if num_pix == 1:
            check_bins = real_size / (num_pix * 4)
        else:
            check_bins = real_size / ((num_pix - 1) * 4)
Unknown's avatar
Unknown committed
276

ssomnath's avatar
ssomnath committed
277
        if self._verbose:
278
279
280
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
281
        if tot_bins % 1 and check_bins % 1:
282
283
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
284
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
285
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
286
287
288
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
289
290
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
291
292
293
294
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
295
        if 'parm_mat' in path_dict.keys():
ssomnath's avatar
ssomnath committed
296
            if self._verbose:
297
                print('\treading BE arrays from parameters text file')
298
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self._read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
299
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
300
            if self._verbose:
301
                print('\treading BE arrays from old mat text file')
302
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self._read_old_mat_be_vecs(path_dict['old_mat_parms'], verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
303
        else:
304
305
            warn('No secondary parameters file provided. Generating dummy BE '
                 'arrays')
Unknown's avatar
Unknown committed
306
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
307
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
308
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
309
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
310

311
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
312
313
314
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
315

Somnath, Suhas's avatar
Somnath, Suhas committed
316
317
318
319
320
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
321

Somnath, Suhas's avatar
Somnath, Suhas committed
322
        self.FFT_BE_wave = bin_FFT
323

Somnath, Suhas's avatar
Somnath, Suhas committed
324
        if isBEPS:
ssomnath's avatar
ssomnath committed
325
            if self._verbose:
326
                print('\tBuilding UDVS table for BEPS')
ssomnath's avatar
ssomnath committed
327
            UDVS_labs, UDVS_units, UDVS_mat = self._build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
328

ssomnath's avatar
ssomnath committed
329
            if self._verbose:
330
                print('\tTrimming UDVS table to remove unused plot group columns')
331

332
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
333

334
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
335

336
            # Will assume that all excitation waveforms have same num of bins
Unknown's avatar
Unknown committed
337
338
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps
ssomnath's avatar
ssomnath committed
339
            if self._verbose:
340
341
                print('\t# UDVS steps: {}, # bins/step: {}'
                      ''.format(num_actual_udvs_steps, bins_per_step))
Unknown's avatar
Unknown committed
342

Somnath, Suhas's avatar
Somnath, Suhas committed
343
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
344
345
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
346
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
347

Somnath, Suhas's avatar
Somnath, Suhas committed
348
349
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
350

351
352
353
            if len(np.unique(UDVS_mat[:, 2])) == 0:
                raise ValueError('No non-zero rows in AC amplitude')

Unknown's avatar
Unknown committed
354
355
            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
356
357
358
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
359
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
360
                # UDVS step
361
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
362
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
363
            del stind, step_index
Unknown's avatar
Unknown committed
364

Somnath, Suhas's avatar
Somnath, Suhas committed
365
        else:  # BE Line
ssomnath's avatar
ssomnath committed
366
            if self._verbose:
367
                print('\tPreparing supporting variables since BE-Line')
Somnath, Suhas's avatar
Somnath, Suhas committed
368
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
369
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
370
371
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
372
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
373
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
374
375
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
376

Chris Smith's avatar
Chris Smith committed
377
378
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
379

380
        # legacy parmeters inserted for BEAM
Somnath, Suhas's avatar
Somnath, Suhas committed
381
382
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
383
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
384
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
385

ssomnath's avatar
ssomnath committed
386
        if self._verbose:
387
            print('\tPreparing UDVS slices for region references')
Somnath, Suhas's avatar
Somnath, Suhas committed
388
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
389
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
390
391
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
392
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
393
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
394
395

        if self.expt_type == 2:
ssomnath's avatar
ssomnath committed
396
            if self._verbose:
397
                print('\tExperiment type = 2. Doubling BE vectors')
Unknown's avatar
Unknown committed
398
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
399
400
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
401
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
402
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
403

Somnath, Suhas's avatar
Somnath, Suhas committed
404
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
405
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
ssomnath's avatar
ssomnath committed
406
        if self._verbose:
407
            print('\tCalculating spectroscopic values')
ssomnath's avatar
ssomnath committed
408
409
410
411
        ret_vals = createSpecVals(UDVS_mat, old_spec_inds, bin_freqs,
                                  exec_bin_vec, parm_dict, UDVS_labs,
                                  UDVS_units, verbose=verbose)
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = ret_vals
412

ssomnath's avatar
ssomnath committed
413
        if self._verbose:
414
            print('\t\tspec_vals_labs: {}'.format(spec_vals_labs))
415
416
417
            unit_vals = get_unit_values(spec_inds, spec_vals,
                                        all_dim_names=spec_vals_labs,
                                        is_spec=True, verbose=False)
418
419
420
421
            print('\tUnit spectroscopic values')
            for key, val in unit_vals.items():
                print('\t\t{} : length: {}, values:\n\t\t\t{}'.format(key, len(val), val))

422
423
424
425
        if spec_inds.shape[1] != tot_bins:
            raise ValueError('Second axis of spectroscopic indices: {} not '
                             'matching with second axis of the expected main '
                             'dataset: {}'.format(spec_inds.shape, tot_bins))
426

427
428
429
430
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
431

Somnath, Suhas's avatar
Somnath, Suhas committed
432
433
434
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
435
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
436

437
        if path.exists(h5_path):
ssomnath's avatar
ssomnath committed
438
            if self._verbose:
439
                print('\tRemoving existing / old translated file: ' + h5_path)
440
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
441

442
        # First create the file
ssomnath's avatar
ssomnath committed
443
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
444

445
        # Then write root level attributes
446
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
447
448
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
449
450
451
452
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
453

Somnath, Suhas's avatar
Somnath, Suhas committed
454
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
455
456
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
457
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
458
        global_parms['translator'] = 'ODF'
ssomnath's avatar
ssomnath committed
459
        if self._verbose:
460
            print('\tWriting attributes to HDF5 file root')
461
        write_simple_attrs(h5_f, global_parms)
462
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
463

464
465
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
466

467
        # Write attributes at the measurement group level
ssomnath's avatar
ssomnath committed
468
        if self._verbose:
469
            print('\twriting attributes to Measurement group')
470
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
471

472
473
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
474

475
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
476
477
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
478

479
        # Now the datasets!
ssomnath's avatar
ssomnath committed
480
        if self._verbose:
481
            print('\tCreating ancillary datasets')
Chris Smith's avatar
Chris Smith committed
482
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
483

484
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
ssomnath's avatar
ssomnath committed
485
486
487
        # TODO: Avoid using region references in USID
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=self._verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=False)
488

Chris Smith's avatar
Chris Smith committed
489
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
490

Chris Smith's avatar
Chris Smith committed
491
492
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
493

Chris Smith's avatar
Chris Smith committed
494
495
496
497
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
498

ssomnath's avatar
ssomnath committed
499
        if self._verbose:
500
501
502
503
            print('\tWriting Position datasets')

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)),
                    Dimension('Y', 'm', np.arange(num_rows))]
ssomnath's avatar
ssomnath committed
504
505
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=self._verbose)
        if self._verbose:
506
            print('\tPosition datasets of shape: {}'.format(h5_pos_ind.shape))
507

ssomnath's avatar
ssomnath committed
508
        if self._verbose:
509
            print('\tWriting Spectroscopic datasets of shape: {}'.format(spec_inds.shape))
510
511
512
        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
ssomnath's avatar
ssomnath committed
513
514
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=self._verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=False)
515
            write_simple_attrs(dset, spec_dim_dict)
516
517

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
ssomnath's avatar
ssomnath committed
518
        if self._verbose:
519
            print('\tWriting noise floor dataset')
Chris Smith's avatar
Chris Smith committed
520
521
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
522
523
524
525
526
527
528
529
530
531
532

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
ssomnath's avatar
ssomnath committed
533
        if self._verbose:
534
            print('\tHDF5 dataset will have chunks of size: {}'.format(BEPS_chunks))
535
            print('\tCreating empty main dataset of shape: ({}, {})'.format(num_pix, tot_bins))
536
537
538
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
ssomnath's avatar
ssomnath committed
539
                                         h5_spec_vals=h5_spec_vals, verbose=self._verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
540

ssomnath's avatar
ssomnath committed
541
        if self._verbose:
542
543
            print('\tReading data from binary data files into raw HDF5')
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
544
                        add_pix)
Unknown's avatar
Unknown committed
545

ssomnath's avatar
ssomnath committed
546
        if self._verbose:
547
            print('\tGenerating plot groups')
548
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
549
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
550
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
ssomnath's avatar
ssomnath committed
551
552
                           do_histogram=do_histogram, debug=self._verbose)
        if self._verbose:
553
            print('\tUpgrading to USIDataset')
554
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
555
556
557

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
ssomnath's avatar
ssomnath committed
558
            if self._verbose:
559
                print('\tReading data in secondary channels (current)')
560
            self._read_secondary_channel(h5_meas_group, aux_files)
561

ssomnath's avatar
ssomnath committed
562
        if self._verbose:
563
            print('\tClosing HDF5 file')
564
        h5_f.close()
Unknown's avatar
Unknown committed
565

Somnath, Suhas's avatar
Somnath, Suhas committed
566
        return h5_path
Chris Smith's avatar
Chris Smith committed
567

568
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
569
                   add_pix):
Chris Smith's avatar
Chris Smith committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
ssomnath's avatar
ssomnath committed
596
            if self._verbose:
597
                print('\t\tReading all raw data for BE-Line in one shot')
598
599
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
600
                                  parm_dict['num_udvs_steps'])
601
602
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
Chris Smith's avatar
Chris Smith committed
603
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
ssomnath's avatar
ssomnath committed
604
            if self._verbose:
605
606
607
                print('\t\tReading all raw BEPS (out-of-field) data at once')
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
608
                                  parm_dict['num_udvs_steps'])
609
610
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'in-field':
Chris Smith's avatar
Chris Smith committed
611
            # Do this for in-field only
ssomnath's avatar
ssomnath committed
612
            if self._verbose:
613
614
615
                print('\t\tReading all raw BEPS (in-field only) data at once')
            self._quick_read_data(path_dict['write_real'],
                                  path_dict['write_imag'],
ssomnath's avatar
ssomnath committed
616
                                  parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
617
618
        else:
            # Large BEPS datasets OR those with in-and-out of field
ssomnath's avatar
ssomnath committed
619
            if self._verbose:
620
621
622
623
624
                print('\t\tReading all raw data for in-and-out-of-field OR '
                      'very large file one pixel at a time')
            self._read_beps_data(path_dict, UDVS_mat.shape[0],
                                 parm_dict['VS_measure_in_field_loops'],
                                 add_pix)
625
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
626

627
    def _read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
646

Somnath, Suhas's avatar
Somnath, Suhas committed
647
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
648
649
650
651

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
652
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
653
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
654
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
655
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
656
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
657
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
658
659
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
660
            if 0.5 * udvs_steps % 1:
661
662
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
663
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
664
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
665
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
666
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
667
668
669
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
670
            if step_size % 1:
671
672
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
673
            step_size = int(step_size)
674

675
676
        rand_spectra = self._get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra)
677
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
678

Somnath, Suhas's avatar
Somnath, Suhas committed
679
680
681
682
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
683
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
684
685
686
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
687
688
689
690
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
691
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
692
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
693
694
695
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
696
697
698
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
699
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
700

Somnath, Suhas's avatar
Somnath, Suhas committed
701
702
703
704
705
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
706

Somnath, Suhas's avatar
Somnath, Suhas committed
707
708
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
709
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
710
711
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
712
713
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
714
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
715
716
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
717
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
718
719
720

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
721
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
722
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
723

Somnath, Suhas's avatar
Somnath, Suhas committed
724
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
725
726
727
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
728
        print('---- Finished reading files -----')
729

ssomnath's avatar
ssomnath committed
730
    def _quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
731
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
732
733
734
735
736
737
738
739
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
740
741
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
742
        """
743
744
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0],
                             self.h5_raw.shape[1] * 4)
745
746

        step_size = self.h5_raw.shape[1] / udvs_steps
747
748
749
750
        rand_spectra = self._get_random_spectra([parser],
                                                self.h5_raw.shape[0],
                                                udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra,
ssomnath's avatar
ssomnath committed
751
752
                                                verbose=self._verbose)
        if self._verbose:
753
            print('\t\t\tChecking if conjugate is required')
754
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
755
        raw_vec = parser.read_all_data()
756
        if take_conjugate:
ssomnath's avatar
ssomnath committed
757
            if self._verbose:
758
                print('\t'*4 + 'Taking conjugate for positive quality factors')
759
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
760

Rama Vasudevan's avatar
Rama Vasudevan committed
761
762
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
763
            warn('Warning! Raw data length {} is not matching placeholder length {}. '
Rama Vasudevan's avatar
Rama Vasudevan committed
764
765
766
767
768
769
770
771
772
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Somnath, Suhas's avatar
Somnath, Suhas committed
773
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
774
775
776
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
777
        self.h5_raw[:, :] = np.complex64(raw_mat)
778
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
779

Unknown's avatar
Unknown committed
780
781
        print('---- Finished reading files -----')

782
783
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
784
785
786
787
788
789
790
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
791
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
792
793
794
795
796
797
798
799
800
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
801
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
802

803
804
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
805
806
807
808
809
810
811
812
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
813

Somnath, Suhas's avatar
Somnath, Suhas committed
814
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
815
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
816
817
818
819
820
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
821
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
822
823
824
825
826
827
828
829
830
831
832
833
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
834
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
835

ssomnath's avatar
ssomnath committed
836
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
837
838
839
840
841
842
843
844
845
846
847
848
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
ssomnath's avatar
ssomnath committed
849
        if self._verbose:
850
            print('\t---------- Reading Secondary Channel  ----------')
851
        if isinstance(aux_file_path, (list, tuple)):
852
853
854
855
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

856
        is_in_out_field = 'Field' in self.h5_raw.spec_dim_labels
857