be_odf.py 62.3 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
    createSpecVals, requires_conjugate, nf32
20
from pyUSID.io.translator import Translator
21
22
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
23
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
24
    write_reduced_anc_dsets
25
from pyUSID.io.usi_data import USIDataset
26
from pyUSID.processing.comp_utils import get_available_memory
27

28
29
30
if sys.version_info.major == 3:
    unicode = str

31

Somnath, Suhas's avatar
Somnath, Suhas committed
32
33
34
35
36
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
37

Chris Smith's avatar
Chris Smith committed
38
39
40
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
41
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
42
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
43
44
45
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
46

47
    @staticmethod
48
    def is_valid_file(data_path):
49
50
51
52
53
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
54
        data_path : str
55
56
57
58
            Path to raw data file

        Returns
        -------
59
60
61
62
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
63
        """
64
65
66
67
68
69
70
71
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
72
73
74
75
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
76
77
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
78
79

        # Check if the data is in the new or old format:
80
81
82
83
84
85
86
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
87
            # Though this translator could also read the files but the NDF Translator is more robust...
88
89
90
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
91
92

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
93

94
95
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
96
            return None
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
114
        else:
115
            return None
116

117
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
132
133
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
134
135
136
137
138
139
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
140
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
141
        (folder_path, basename) = path.split(file_path)
142
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
143

Somnath, Suhas's avatar
Somnath, Suhas committed
144
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
145
146
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
147

Somnath, Suhas's avatar
Somnath, Suhas committed
148
        if 'parm_txt' in path_dict.keys():
149
150
            if verbose:
                print('\treading parameters from text file')
Unknown's avatar
Unknown committed
151
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
Somnath, Suhas's avatar
Somnath, Suhas committed
152
        elif 'old_mat_parms' in path_dict.keys():
153
154
            if verbose:
                print('\treading parameters from old mat file')
Somnath, Suhas's avatar
Somnath, Suhas committed
155
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
156
157
158
159
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
160
        else:
161
            raise IOError('No parameters file found! Cannot translate this dataset!')
162
163
        if verbose:
            print('\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
164

Somnath, Suhas's avatar
Somnath, Suhas committed
165
166
167
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
168

Somnath, Suhas's avatar
Somnath, Suhas committed
169
170
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
171

Somnath, Suhas's avatar
Somnath, Suhas committed
172
            if not std_expt:
173
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
174
175
176

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
177
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
178
179
180
181
182
183
184
185
186
187
188
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
189

Somnath, Suhas's avatar
Somnath, Suhas committed
190
191
192
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
193

Somnath, Suhas's avatar
Somnath, Suhas committed
194
        # Check file sizes:
195
196
197
        if verbose:
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
198
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
199
200
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
201
202
203
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
204

Somnath, Suhas's avatar
Somnath, Suhas committed
205
206
207
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

208
        # Check here if a second channel for current is present
209
210
        # Look for the file containing the current data

211
212
        if verbose:
            print('\tLooking for secondary channels')
213
214
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
215
        current_data_exists = False
216
217
218
219
220
221
222
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
223
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
224
225
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
Unknown's avatar
Unknown committed
226
227
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
228
        # Check for case where only a single pixel is missing.
Unknown's avatar
Unknown committed
229
230
        check_bins = real_size / ((num_pix - 1) * 4)

231
232
233
234
        if verbose:
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
235
        if tot_bins % 1 and check_bins % 1:
236
237
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
238
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
239
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
240
241
242
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
243
244
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
245
246
247
248
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
249
        if 'parm_mat' in path_dict.keys():
250
251
252
            if verbose:
                print('\treading BE arrays from parameters text file')
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
253
        elif 'old_mat_parms' in path_dict.keys():
254
255
256
            if verbose:
                print('\treading BE arrays from old mat text file')
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
257
        else:
258
259
            if verbose:
                print('\tGenerating dummy BE arrays')
Unknown's avatar
Unknown committed
260
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
261
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
262
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
263
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
264

265
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
266
267
268
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
269

Somnath, Suhas's avatar
Somnath, Suhas committed
270
271
272
273
274
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
275

Somnath, Suhas's avatar
Somnath, Suhas committed
276
        self.FFT_BE_wave = bin_FFT
277

Somnath, Suhas's avatar
Somnath, Suhas committed
278
        if isBEPS:
279
280
            if verbose:
                print('\tBuilding UDVS table')
281
            UDVS_labs, UDVS_units, UDVS_mat = self.__build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
282
283

            #             Remove the unused plot group columns before proceeding:
284
285
            if verbose:
                print('\tTrimming UDVS table')
286
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
287

288
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
289
290
291
292
293

            #             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
294
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
295
296
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
297
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
298

Somnath, Suhas's avatar
Somnath, Suhas committed
299
300
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
301
302
303

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
304
305
306
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
307
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
308
                # UDVS step
309
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
310
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
311
            del stind, step_index
Unknown's avatar
Unknown committed
312

Somnath, Suhas's avatar
Somnath, Suhas committed
313
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
314
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
315
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
316
317
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
318
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
319
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
320
321
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
322

Chris Smith's avatar
Chris Smith committed
323
324
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
325

Somnath, Suhas's avatar
Somnath, Suhas committed
326
327
328
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
329
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
330
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
331

Somnath, Suhas's avatar
Somnath, Suhas committed
332
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
333
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
334
335
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
336
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
337
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
338
339
340

        if self.expt_type == 2:
            # Need to double the vectors:
Unknown's avatar
Unknown committed
341
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
342
343
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
344
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
345
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
346

Somnath, Suhas's avatar
Somnath, Suhas committed
347
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
348
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
Somnath, Suhas's avatar
Somnath, Suhas committed
349
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
350
                                                                                                     old_spec_inds,
Somnath, Suhas's avatar
Somnath, Suhas committed
351
352
353
354
355
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
356
357
358
359
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
360

Somnath, Suhas's avatar
Somnath, Suhas committed
361
362
363
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
364
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
365

366
367
        if path.exists(h5_path):
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
368

369
        # First create the file
ssomnath's avatar
ssomnath committed
370
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
371

372
        # Then write root level attributes
373
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
374
375
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
376
377
378
379
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
380

Somnath, Suhas's avatar
Somnath, Suhas committed
381
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
382
383
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
384
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
385
        global_parms['translator'] = 'ODF'
386
        write_simple_attrs(h5_f, global_parms)
387
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
388

389
390
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
391

392
393
        # Write attributes at the measurement group level
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
394

395
396
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
397

398
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
399
400
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
401

402
        # Now the datasets!
Chris Smith's avatar
Chris Smith committed
403
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
404

405
406
407
408
409
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=verbose)
        
        # ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
Chris Smith's avatar
Chris Smith committed
410
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
411
412

        # ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Chris Smith's avatar
Chris Smith committed
413
414
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
415

Chris Smith's avatar
Chris Smith committed
416
417
418
419
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
420
421
422
423
424
425
426
427
428

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)), Dimension('Y', 'm', np.arange(num_rows))]
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=verbose)

        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=verbose)
429
            write_simple_attrs(dset, spec_dim_dict)
430
431

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Chris Smith's avatar
Chris Smith committed
432
433
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
                                         h5_spec_vals=h5_spec_vals, verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
449

Chris Smith's avatar
Chris Smith committed
450
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Unknown's avatar
Unknown committed
451

452
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
453
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
454
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Unknown's avatar
Unknown committed
455
                           do_histogram=do_histogram, debug=verbose)
Unknown's avatar
Unknown committed
456

457
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
458
459
460

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
461
462
            self._read_secondary_channel(h5_meas_group, aux_files)

463
        h5_f.close()
Unknown's avatar
Unknown committed
464

Somnath, Suhas's avatar
Somnath, Suhas committed
465
        return h5_path
Chris Smith's avatar
Chris Smith committed
466

467

Chris Smith's avatar
Chris Smith committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
495
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
496
497
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
498
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
499
500
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
501
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
502
503
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
504
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
505
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
506

Somnath, Suhas's avatar
Somnath, Suhas committed
507
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
526

Somnath, Suhas's avatar
Somnath, Suhas committed
527
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
528
529
530
531

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
532
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
533
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
534
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
535
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
536
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
537
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
538
539
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
540
            if 0.5 * udvs_steps % 1:
541
542
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
543
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
544
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
545
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
546
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
547
548
549
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
550
            if step_size % 1:
551
552
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
553
            step_size = int(step_size)
554

555
556
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
557
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
558

Somnath, Suhas's avatar
Somnath, Suhas committed
559
560
561
562
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
563
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
564
565
566
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
567
568
569
570
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
571
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
572
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
573
574
575
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
576
577
578
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
579
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
580

Somnath, Suhas's avatar
Somnath, Suhas committed
581
582
583
584
585
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
586

Somnath, Suhas's avatar
Somnath, Suhas committed
587
588
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
589
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
590
591
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
592
593
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
594
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
595
596
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
597
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
598
599
600

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
601
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
602
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
603

Somnath, Suhas's avatar
Somnath, Suhas committed
604
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
605
606
607
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
608
        print('---- Finished reading files -----')
609
610

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
611
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
612
613
614
615
616
617
618
619
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
620
621
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
622
        """
Unknown's avatar
Unknown committed
623
        print('---- reading all data at once ----------')
Somnath, Suhas's avatar
Somnath, Suhas committed
624

Unknown's avatar
Unknown committed
625
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1] * 4)
626
627

        step_size = self.h5_raw.shape[1] / udvs_steps
628
629
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
630
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
631
        raw_vec = parser.read_all_data()
632
        if take_conjugate:
633
            print('Taking conjugate to ensure positive Quality factors')
634
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
635

Rama Vasudevan's avatar
Rama Vasudevan committed
636
637
638
639
640
641
642
643
644
645
646
647
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
            print('Warning! Raw data length {} is not matching placeholder length {}. '
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Unknown's avatar
Unknown committed
648

Somnath, Suhas's avatar
Somnath, Suhas committed
649
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
650
651
652
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
653
        self.h5_raw[:, :] = np.complex64(raw_mat)
654
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
655

Unknown's avatar
Unknown committed
656
657
        print('---- Finished reading files -----')

658
659
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
660
661
662
663
664
665
666
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
667
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
668
669
670
671
672
673
674
675
676
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
677
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
678

679
680
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
681
682
683
684
685
686
687
688
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
689

Somnath, Suhas's avatar
Somnath, Suhas committed
690
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
691
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
692
693
694
695
696
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
697
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
698
699
700
701
702
703
704
705
706
707
708
709
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
710
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
        print('---- Reading Secondary Channel  ----------')
        if len(aux_file_path)>1:
            print('Detected multiple files, assuming in and out of field')
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

        freq_index = self.h5_raw.spec_dim_labels.index('Frequency')
        num_pix = self.h5_raw.shape[0]
        spectral_len = 1

        for i in range(len(self.h5_raw.spec_dim_sizes)):
            if i == freq_index:
                continue
            spectral_len = spectral_len * self.h5_raw.spec_dim_sizes[i]

        #num_forc_cycles = self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("FORC")]
        #num_dc_steps =  self.h5_raw.spec_dim_sizes[self.h5_raw.spec_dim_labels.index("DC_Offset")]

        # create a new channel
        h5_current_channel_group = create_indexed_group(h5_meas_group, 'Channel')

        # Copy attributes from the main channel
        copy_attributes(self.h5_raw.parent, h5_current_channel_group)

        # Modify attributes that are different
        write_simple_attrs(h5_current_channel_group, {'Channel_Input': 'IO_Analog_Input_2',
                                                      'channel_type': 'Current'}, verbose=True)

        #Get the reduced dimensions
755
        h5_current_spec_inds, h5_current_spec_values = write_reduced_anc_dsets(h5_current_channel_group,
756
                                                        self.h5_raw.h5_spec_inds,
757
                                                        self.h5_raw.h5_spec_vals, 'Frequency', is_spec=True)
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812


        h5_current_main = write_main_dataset(h5_current_channel_group,  # parent HDF5 group
                                             (num_pix, spectral_len),  # shape of Main dataset
                                             'Raw_Data',  # Name of main dataset
                                             'Current',  # Physical quantity contained in Main dataset
                                             'nA',  # Units for the physical quantity
                                             None,  # Position dimensions
                                             None,  # Spectroscopic dimensions
                                             h5_pos_inds=self.h5_raw.h5_pos_inds,
                                             h5_pos_vals=self.h5_raw.h5_pos_vals,
                                             h5_spec_inds=h5_current_spec_inds,
                                             h5_spec_vals=h5_current_spec_values,
                                             dtype=np.float32,  # data type / precision
                                             main_dset_attrs={'IO_rate': 4E+6, 'Amplifier_Gain': 9})

        # Now calculate the number of positions that can be stored in memory in one go.
        b_per_position = np.float32(0).itemsize * spectral_len

        max_pos_per_read = int(np.floor((get_available_memory()) / b_per_position))

        # if self._verbose:
        print('Allowed to read {} pixels per chunk'.format(max_pos_per_read))

        #Open the read and write files and write them to the hdf5 file
        for aux_file in aux_file_paths:
            if 'write' in aux_file:
                infield = True
            else:
                infield=False

            cur_file = open(aux_file, "rb")

            start_pix = 0

            while start_pix < num_pix:
                end_pix = min(num_pix, start_pix + max_pos_per_read)

                # TODO: Fix for when it won't fit in memory.

                #if max_pos_per_read * b_per_position > num_pix * b_per_position:
                cur_data = np.frombuffer(cur_file.read(), dtype='f')
                #else:
                #cur_data = np.frombuffer(cur_file.read(max_pos_per_read * b_per_position), dtype='f')

                cur_data = cur_data.reshape(end_pix - start_pix, spectral_len//2)

                # Write to h5
                if infield:
                    h5_current_main[start_pix:end_pix, ::2] = cur_data
                else:
                    h5_current_main[start_pix:end_pix, 1::2] = cur_data
                start_pix = end_pix


Somnath, Suhas's avatar
Somnath, Suhas committed
813
814
    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
Unknown's avatar
Unknown committed
838
        matread = loadmat(file_path, squeeze_me=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
839
        BE_wave = matread['BE_wave']
Unknown's avatar
Unknown committed
840
        bin_inds = matread['bin_ind'] - 1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
841
842
843
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
844
845
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Unknown's avatar
Unknown committed
846

847
    @staticmethod
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    def __infer_frac_phase(slopes):
        """
        Infers the VS cycle fraction and phase when parameters were
        stored in old mat files

        Parameters
        --------------------
        slopes : list / tuple
            Array of mean slopes of each fraction of a SINGLE cycle

        Returns
        --------------------
        tuple:
            fraction : float
                Fraction of VS cycle
            phase : float
                Phase offset for VS cycle
        """
        if all([_ > 0 for _ in slopes]):
            return 0.25, 0
        elif all([_ < 0 for _ in slopes]):
            return 0.25, 0.75
        elif all([_ > 0 for _ in slopes[:2]]) and all(
                [_ < 0 for _ in slopes[2:]]):
            return 0.5, 0
        elif all([_ < 0 for _ in slopes[:2]]) and all(
                [_ > 0 for _ in slopes[2:]]):
            return 0.5, 0.5
        elif all([_ > 0 for _ in slopes[:1]]) and all(
                [_ < 0 for _ in slopes[1:]]):
            return 0.75, 0
        elif all([_ > 0 for _ in slopes[:3]]) and all(
                [_ < 0 for _ in slopes[3:]]):
            return 0.75, 0.25
        elif all([_ < 0 for _ in slopes[:1]]) and all(
                [_ > 0 for _ in slopes[1:]]):
            return 0.75, 0.5
        elif all([_ < 0 for _ in slopes[:3]]) and all(
                [_ > 0 for _ in slopes[3:]]):
            return 0.75, 0.75
        elif slopes[0] > 0 and slopes[1] < 0 and slopes[2] < 0 and slopes[
            3] > 0:
            return 1, 0
        elif slopes[0] < 0 and slopes[1] > 0 and slopes[2] > 0 and slopes[
            3] < 0:
            return 1, 0.5
        else:
            return 0, 0

Somnath, Suhas's avatar
Somnath, Suhas committed
897
898
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
899
900
901
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
902
903

        Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
904
905
906
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
907
908

        Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
909
910
911
912
913
914
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
Unknown's avatar
Unknown committed
915
916
917

        parm_dict['IO_rate'] = str(int(matread['AO_rate'] / 1E+6)) + ' MHz'

Somnath, Suhas's avatar
Somnath, Suhas committed
918
919
920
921
922
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
Unknown's avatar
Unknown committed
923

924
925
        if position_vec[0] != position_vec[1] or position_vec[2] != \
                position_vec[3]:
Somnath, Suhas's avatar
Somnath, Suhas committed
926
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
927
928
            parm_dict['grid_num_rows'] = position_vec[
                0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
929
            parm_dict['grid_num_cols'] = position_vec[1]
Unknown's avatar
Unknown committed
930

Somnath, Suhas's avatar
Somnath, Suhas committed
931
        BE_parm_vec_1 = matread['BE_parm_vec_1']
Rama Vasudevan's avatar
Rama Vasudevan committed
932
933
934
935
936
        try:
            BE_parm_vec_2 = matread['BE_parm_vec_2']
        except KeyError:
            BE_parm_vec_2 = 'None'

Somnath, Suhas's avatar
Somnath, Suhas committed
937
        # Not required for translation but necessary to have
938
        if BE_parm_vec_1[0] == 3 or BE_parm_vec_2[0] == 3:
Somnath, Suhas's avatar
Somnath, Suhas committed
939
940
941
942
943
944
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
945
946
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[
            4]  # 150 most likely
Somnath, Suhas's avatar
Somnath, Suhas committed
947
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Unknown's avatar
Unknown committed
948
949
950
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6]
        parm_dict['BE_points_per_step'] = 2 ** int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2 ** int(BE_parm_vec_1[8])
Somnath, Suhas's avatar
Somnath, Suhas committed
951
952
953
954
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
Unknown's avatar
Unknown committed
955

Somnath, Suhas's avatar
Somnath, Suhas committed
956
        assembly_parm_vec = matread['assembly_parm_vec']
Unknown's avatar
Unknown committed
957

Somnath, Suhas's avatar
Somnath, Suhas committed
958
959
960
961
962
963
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
Unknown's avatar
Unknown committed
964

Somnath, Suhas's avatar
Somnath, Suhas committed
965
966
967
968
969
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
Unknown's avatar
Unknown committed
970

Somnath, Suhas's avatar
Somnath, Suhas committed
971
972
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Unknown's avatar
Unknown committed
973

Somnath, Suhas's avatar
Somnath, Suhas committed
974
975
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
Unknown's avatar
Unknown committed
976
977
978
979

        VS_start_V = VS_parms[4]
        VS_start_loop_amp = VS_parms[5]
        VS_final_loop_amp = VS_parms[6]
Somnath, Suhas's avatar
Somnath, Suhas committed
980
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Unknown's avatar
Unknown committed
981

Somnath, Suhas's avatar
Somnath, Suhas committed
982
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Unknown's avatar
Unknown committed
983
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3]
984
        parm_dict['VS_steps_per_full_cycle'] = int(VS_parms[7])
985
986

        # These two will be assigned after the initial round of parsing
Somnath, Suhas's avatar
Somnath, Suhas committed
987
        parm_dict['VS_cycle_fraction'] = 'full'
Unknown's avatar
Unknown committed
988
        parm_dict['VS_cycle_phase_shift'] = 0
989

990
        parm_dict['VS_number_of_cycles'] = int(VS_parms[2])
Somnath, Suhas's avatar
Somnath, Suhas committed
991
        parm_dict['FORC_num_of_FORC_cycles'] = 1
992
993
994
995
        parm_dict['FORC_V_high1_[V]'] = 1
        parm_dict['FORC_V_high2_[V]'] = 10
        parm_dict['FORC_V_low1_[V]'] = -1
        parm_dict['FORC_V_low2_[V]'] = -10
Unknown's avatar
Unknown committed
996

997
        if VS_parms[0] == 0 or VS_parms[0] == 9:
Somnath, Suhas's avatar
Somnath, Suhas committed
998
            parm_dict['VS_mode'] = 'DC modulation mode'
999
1000
            if VS_parms[0] == 9:
                parm_dict['VS_mode'] = 'current mode'