plot_utils.py 58.4 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
Unknown's avatar
Unknown committed
13
import os
14
import sys
Chris Smith's avatar
merged    
Chris Smith committed
15
import h5py
16
import matplotlib as mpl
17
import matplotlib.pyplot as plt
18
19
import numpy as np
import scipy
20
from scipy.signal import blackman
Unknown's avatar
Unknown committed
21
import ipywidgets as widgets
22
from matplotlib.colors import LinearSegmentedColormap
23
from mpl_toolkits.axes_grid1 import ImageGrid
24
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
25

26
27
28
29
30
31
32
33
34
35
36
# mpl.rcParams.keys()  # gets all allowable keys
mpl.rc('figure', figsize=(5,5))
mpl.rc('lines', linewidth=2)
mpl.rc('axes', labelsize=16, titlesize=16)
mpl.rc('figure', titlesize=20)
mpl.rc('font', size=14) # global font size
mpl.rc('legend', fontsize=16, fancybox=True)
mpl.rc('xtick.major', size=6)
mpl.rc('xtick.minor', size=4)
# mpl.rcParams['xtick.major.size'] = 6

37
38
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
39

Somnath, Suhas's avatar
Somnath, Suhas committed
40
default_cmap = plt.cm.viridis
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
74

75
def make_scalar_mappable(vmin, vmax, cmap=None):
76
    """
77
    Creates a scalar mappable object that can be used to create a colorbar for non-image (e.g. - line) plots
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    Parameters
    ----------
    vmin : float
        Minimum value for colorbar
    vmax : float
        Maximum value for colorbar
    cmap : colormap object
        Colormap object to use

    Returns
    -------
    sm : matplotlib.pyplot.cm.ScalarMappable object
        The object that can used to create a colorbar via plt.colorbar(sm)
    """
    if cmap is None:
        cmap = default_cmap

    sm = plt.cm.ScalarMappable(cmap=cmap,
                               norm=plt.Normalize(vmin=vmin, vmax=vmax))
    # fake up the array of the scalar mappable
    sm._A = []
    return sm


def get_cmap_object(cmap):
    """
    Get the matplotlib.colors.LinearSegmentedColormap object regardless of the input

    Parameters
    ----------
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
    Returns
    -------
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Requested / Default colormap object
    """
    if cmap is None:
        return default_cmap
    elif isinstance(cmap, str):
        return plt.get_cmap(cmap)
    return cmap


123
124
125
126
127
128
129
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
130
        color map object that can be used in place of the default colormap
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
152

Somnath, Suhas's avatar
Somnath, Suhas committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
Unknown's avatar
Unknown committed
183
                             for (dist, colors) in interp_vals][::-1])}
Somnath, Suhas's avatar
Somnath, Suhas committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
214
215


Somnath, Suhas's avatar
Somnath, Suhas committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
235
236


237
def discrete_cmap(num_bins, base_cmap=default_cmap):
238
239
240
241
242
243
244
245
246
247
248
249
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
250
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
251
252
        Discretized color map

Chris Smith's avatar
Chris Smith committed
253
254
255
256
257
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

258
    """
259
    if base_cmap is None:
260
        base_cmap = default_cmap.name
261

262
    elif isinstance(base_cmap, type(default_cmap)):
263
        base_cmap = base_cmap.name
264

265
266
267
268
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
269

270

Chris Smith's avatar
Chris Smith committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
297

298
299

def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=default_cmap, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
300
301
302
303
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

304
305
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
306
307
308
309
310
311
312
313
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
314
315
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
316
    """
317
318
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
319
    pts_per_step = int(len(ai_vec) / num_steps)
320
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
321
322
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
323
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
324
325
326
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
327
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
328
    """
329
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
330
331
332
    fig.colorbar(CS3)"""


333
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
334
                     cmap=default_cmap, y_offset=0, **kwargs):
335
336
337
338
339
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
340
    axis : axis handle
341
342
343
344
345
346
347
348
349
350
351
352
353
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
354
355
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
356
    """
357
358
    cmap = get_cmap_object(cmap)

359
360
361
362
363
364
365
366
367
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

368
    for line_ind in range(num_lines):
Unknown's avatar
Unknown committed
369
        axis.plot(x_axis, line_family[line_ind] + line_ind * y_offset,
370
371
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
372
373


Unknown's avatar
Unknown committed
374
def plot_map(axis, data, stdevs=None, origin='lower', **kwargs):
375
376
377
378
379
380
381
382
383
384
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
Unknown's avatar
Unknown committed
385
386
    stdevs : unsigned int (Optional. Default = None)
        Number of standard deviations to consider for plotting.  If None, full range is plotted.
Chris Smith's avatar
Chris Smith committed
387
388
389
390
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
391

392
393
394
    Returns
    -------
    """
Unknown's avatar
Unknown committed
395
396
397
398
399
400
401
402
403
    if stdevs is not None:
        data_mean = np.mean(data)
        data_std = np.std(data)
        plt_min = data_mean - stdevs * data_std
        plt_max = data_mean + stdevs * data_std
    else:
        plt_min = np.min(data)
        plt_max = np.max(data)

404
    im = axis.imshow(data, interpolation='none',
Unknown's avatar
Unknown committed
405
406
                     vmin=plt_min,
                     vmax=plt_max,
407
                     origin=origin,
408
                     **kwargs)
409

410
    return im
411

412

413
def single_img_cbar_plot(axis, img, show_xy_ticks=True, show_cbar=True, x_size=1, y_size=1, num_ticks=4,
Unknown's avatar
Unknown committed
414
                         cbar_label=None, tick_font_size=14, **kwargs):
415
416
417
418
419
420
421
422
423
424
    """
    Plots an image within the given axis with a color bar + label and appropriate X, Y tick labels.
    This is particularly useful to get readily interpretable plots for papers

    Parameters
    ----------
    axis : matplotlib.axis object
        Axis to plot this image onto
    img : 2D numpy array with real values
        Data for the image plot
Unknown's avatar
Unknown committed
425
    show_xy_ticks : bool, Optional, default = None, shown unedited
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        Whether or not to show X, Y ticks
    show_cbar : bool, optional, default = True
        Whether or not to show the colorbar
    x_size : float, optional, default = 1
        Extent of tick marks in the X axis. This could be something like 1.5 for 1.5 microns
    y_size : float, optional, default = 1
        Extent of tick marks in y axis
    num_ticks : unsigned int, optional, default = 4
        Number of tick marks on the X and Y axes
    cbar_label : str, optional, default = None
        Labels for the colorbar. Use this for something like quantity (units)
    tick_font_size : unsigned int, optional, default = 14
        Font size to apply to x, y, colorbar ticks and colorbar label
    kwargs : dictionary
        Anything else that will be passed on to plot_map or imshow

    Returns
    -------
    im_handle : handle to image plot
        handle to image plot
    cbar : handle to color bar
        handle to color bar
    """
    if 'clim' not in kwargs:
Unknown's avatar
Unknown committed
450
        im_handle = plot_map(axis, img, **kwargs)
451
452
453
    else:
        im_handle = axis.imshow(img, origin='lower', **kwargs)

Unknown's avatar
Unknown committed
454
    if show_xy_ticks is True:
455
456
457
458
459
460
461
        x_ticks = np.linspace(0, img.shape[1] - 1, num_ticks, dtype=int)
        y_ticks = np.linspace(0, img.shape[0] - 1, num_ticks, dtype=int)
        axis.set_xticks(x_ticks)
        axis.set_yticks(y_ticks)
        axis.set_xticklabels([str(np.round(ind * x_size / (img.shape[1] - 1), 2)) for ind in x_ticks])
        axis.set_yticklabels([str(np.round(ind * y_size / (img.shape[0] - 1), 2)) for ind in y_ticks])
        set_tick_font_size(axis, tick_font_size)
Unknown's avatar
Unknown committed
462
    elif show_xy_ticks is False:
463
464
        axis.set_xticks([])
        axis.set_yticks([])
Unknown's avatar
Unknown committed
465
466
    else:
        set_tick_font_size(axis, tick_font_size)
467

468
    cbar = None
469
    if show_cbar:
Unknown's avatar
Unknown committed
470
471
472
473
474
475
        # cbar = fig.colorbar(im_handle, ax=axis)
        # divider = make_axes_locatable(axis)
        # cax = divider.append_axes('right', size='5%', pad=0.05)
        # cbar = plt.colorbar(im_handle, cax=cax)
        cbar = plt.colorbar(im_handle, ax=axis, orientation='vertical',
                            fraction=0.046, pad=0.04, use_gridspec=True)
476
477
478
479
480
481
482
483
484
485
        if cbar_label is not None:
            cbar.set_label(cbar_label, fontsize=tick_font_size)
        """
        z_lims = cbar.get_clim()
        cbar.set_ticks(np.linspace(z_lims[0],z_lims[1], num_ticks))
        """
        cbar.ax.tick_params(labelsize=tick_font_size)
    return im_handle, cbar


Unknown's avatar
Unknown committed
486
487
488
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True,
               plots_on_side=5, x_label='', y_label='', subtitles='Position', title='',
               central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
489
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
490
    """
491
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
492
493
494
495
496

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
497
498
499
500
501
502
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
503
504
505
506
507
508
509
510
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
511
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
526
    if type(datasets) in [h5py.Dataset, np.ndarray]:
527
528
529
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
530
        datasets = [datasets]
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return

    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
567
568

    plots_on_side = min(abs(plots_on_side), 5)
569

Somnath, Suhas's avatar
Somnath, Suhas committed
570
571
572
573
574
575
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

576
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
577
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
578

579
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
580
581
582
583
584
585
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
586
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
587
588

    for count, posn in enumerate(chosen_pos):
589
590
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
591
        else:
592
            for dataset, col_val in zip(datasets, line_colors):
Unknown's avatar
Unknown committed
593
594
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind],
                                     color=col_val)
595
        if h5_pos is not None:
596
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
597
598
599
600
601
602
603
604
605
606
607
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
608
609
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
610
    if title:
611
        fig.suptitle(title, fontsize=14, y=1.05)
Somnath, Suhas's avatar
Somnath, Suhas committed
612
613
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
614

Unknown's avatar
Unknown committed
615

Somnath, Suhas's avatar
Somnath, Suhas committed
616
617
###############################################################################

618

619
620
def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2,
                           cmap=default_cmap):
Somnath, Suhas's avatar
Somnath, Suhas committed
621
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
622
623
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
624
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
625
    -------------
626
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
627
628
629
630
631
632
633
634
635
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting
636
637
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
Somnath, Suhas's avatar
Somnath, Suhas committed
638

Chris Smith's avatar
Chris Smith committed
639
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
640
641
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
642
    """
643
644
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
645
646
647
648
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

649
    for index in range(num_comps):
650
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
651
652
653
654
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
655
656
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
657
            ax.imshow(func(cur_map), cmap=cmap,
Somnath, Suhas's avatar
Somnath, Suhas committed
658
659
660
661
662
663
664
665
666
667
668
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

669
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
670
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
671
672
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
673
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
674
    -------------
675
676
677
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
678
        The vector to plot against
Unknown's avatar
Unknown committed
679
680
681
682
    heading : str
        Title to plot above everything else
    subtitle : str
        Subtile to of Figure
Somnath, Suhas's avatar
Somnath, Suhas committed
683
684
    num_comps : int
        Number of components to plot
Unknown's avatar
Unknown committed
685
    x_label : str
Somnath, Suhas's avatar
Somnath, Suhas committed
686
687
        Label for x axis

Chris Smith's avatar
Chris Smith committed
688
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
689
690
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
691
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
692
693
694
695
696
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
697
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
698

699
    for index in range(num_comps):
700
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
701
702
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
703
704
705
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
706
707
708
709
    fig201.tight_layout()

    return fig201, axes201

Unknown's avatar
Unknown committed
710

Somnath, Suhas's avatar
Somnath, Suhas committed
711
712
713
###############################################################################


714
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
715
    """
716
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
717

Chris Smith's avatar
Chris Smith committed
718
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
719
    -------------
720
721
    scree : 1D real numpy array
        The scree vector from SVD
Unknown's avatar
Unknown committed
722
723
    title : str
        Figure title.  Default Scree
Somnath, Suhas's avatar
Somnath, Suhas committed
724

Chris Smith's avatar
Chris Smith committed
725
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
726
727
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
728
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
729
730
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
731
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
732
733
734
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
735
736
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
737
738
739
740
741
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


742
743
744
# ###############################################################################


745
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Unknown's avatar
Unknown committed
746
747
                   title='Component', heading='Map Stack', colorbar_label='', fig_mult=(5, 5), pad_mult=(0.1, 0.07),
                   **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
748
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
749
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
750

Chris Smith's avatar
Chris Smith committed
751
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
752
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
753
    map_stack : 3D real numpy array
754
        structured as [component, rows, cols]
755
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
756
757
758
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
759
    color_bar_mode : String, Optional
760
        Options are None, single or each. Default None
Unknown's avatar
Unknown committed
761
762
763
764
    evenly_spaced : bool
        Default False
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
765
766
767
768
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
769
770
    heading : String
        ###Insert description here### Default 'Map Stack'
771
772
    colorbar_label : String
        label for colorbar. Default is an empty string.
773
774
775
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
776
777
778
779
780
781
782
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
783

Chris Smith's avatar
Chris Smith committed
784
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
785
786
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
787
    """
788
789
790
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

791
    num_comps = abs(num_comps)
792
    num_comps = min(num_comps, map_stack.shape[0])
793
794

    if evenly_spaced:
795
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
796
797
798
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

799
800
801
802
803
804
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
805
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
806
807
808
    else:
        if not isinstance(title, str):
            title = 'Component'
809
        title = [title + ' ' + str(x) for x in chosen_pos]
810

811
    fig_h, fig_w = fig_mult
812
813
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
814
    if p_rows * p_cols < num_comps:
815
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
816
817
818
819
820
821
822

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
823
824
825
826

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
Unknown's avatar
Unknown committed
827
        inspec_func = inspect.signature
828
829

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
846
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
847
848
849
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

850
851
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
852
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
853
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
854
    fig202.canvas.set_window_title(heading)
855
    fig202.suptitle(heading, fontsize=16+(p_rows+ p_cols), y=0.9)
Somnath, Suhas's avatar
Somnath, Suhas committed
856

857
858
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
859
                      map_stack[index],
860
861
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
862
        if color_bar_mode is 'each':
863
864
            cb = axes202.cbar_axes[count].colorbar(im)
            cb.set_label_text(colorbar_label)
865
    if color_bar_mode is 'single':
866
867
        cb = axes202.cbar_axes[0].colorbar(im)
        cb.set_label_text(colorbar_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
868
869
    return fig202, axes202

870

871
def plot_cluster_h5_group(h5_group, centroids_together=True, cmap=default_cmap):
872
    """
Chris Smith's avatar
Chris Smith committed
873
    Plots the cluster labels and mean response for each cluster
874

Chris Smith's avatar
Chris Smith committed
875
876
877
878
879
880
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot
881
882
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
Chris Smith's avatar
Chris Smith committed
883
884
885
886
887
888
889
890

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
891

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

Unknown's avatar
Unknown committed
912
    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0, None, pos_dims[0]), 1]]
913
914
915
916
917
918
919
920
921
922
923
924
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
925
926

    y_spec_label = get_data_descriptor(h5_mean_resp)
927
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
928

929
930
931
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
932
                                             pos_labels=pos_labels, pos_ticks=pos_ticks, cmap=cmap)
933
934
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
935
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label, cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
936

Unknown's avatar
Unknown committed
937

Somnath, Suhas's avatar
Somnath, Suhas committed
938
###############################################################################
939
940


941
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=default_cmap,
942
943
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
944
    """
945
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
946
947
948
949
950

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
951
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
952
953
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
954
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
955
956
957
958
959
960
961
962
963
964
965
966
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
967
968
969
970
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
971
972
973
974
975
976
977

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
978
    """
979
    cmap = get_cmap_object(cmap)
980
981
982

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
983

984
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
985
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
986
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
987
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
988
989
990
991
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

Unknown's avatar
Unknown committed
992
    if spec_val is None:
Chris Smith's avatar
Chris Smith committed
993
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
994

Chris Smith's avatar
Chris Smith committed
995
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
996
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
997
998
999
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
1000
1001
        axes = [ax_map, ax_amp, ax_phase]

1002
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
1003
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
1004
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
1005
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
1006
1007
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
1008
    else:
Chris Smith's avatar
Chris Smith committed
1009
1010
1011
1012
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
1013
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
1014
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
1015
1016
1017
1018
1019
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
1020
1021

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
1022
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
1023
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
1024
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
1025
1026
1027
1028
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
1029

Chris Smith's avatar
Chris Smith committed
1030
    # im = ax_map.imshow(label_mat, interpolation='none')
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

1042
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
1043
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1044
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
1045
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
1046
    ax_map.axis('tight')"""
1047
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
1048
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
1049
    ax_map.axis('tight')
1050
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
1051
1052
1053
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
1054
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
1055
1056
1057

    return fig, axes

Unknown's avatar
Unknown committed
1058

Somnath, Suhas's avatar
Somnath, Suhas committed
1059
1060
###############################################################################

1061

1062
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4, cmap=default_cmap,
1063
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
1064
    """
1065
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1066

1067
1068
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
1069
1070
1071
1072
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
1073
1074
    max_centroids : unsigned int
                    Number of centroids to plot
1075
1076
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroids
1077
1078
1079
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
1080
1081
1082
1083
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
1084

1085
1086
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
1087
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
1088
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1089

1090
    cmap = get_cmap_object(cmap)
1091

1092
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

1121
    # First plot the labels map:
1122
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0], base_cmap=cmap))
1123
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
1124
1125
    fax1.axis('tight')
    fax1.set_aspect('auto')
1126
    fax1.set_title('Cluster Label Map')
1127
    """im = fax1.imshow(label_mat, interpolation='none')
1128
1129
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
Somnath, Suhas's avatar