be_odf.py 72.7 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import, unicode_literals
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
import sys
12
import datetime
13
from warnings import warn
14
import h5py
Somnath, Suhas's avatar
Somnath, Suhas committed
15
16
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
17

18
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
19
20
    createSpecVals, requires_conjugate, generate_bipolar_triangular_waveform, \
    infer_bipolar_triangular_fraction_phase, nf32
21
from pyUSID.io.translator import Translator
22
23
from pyUSID.io.write_utils import INDICES_DTYPE, VALUES_DTYPE, Dimension, calc_chunks
from pyUSID.io.hdf_utils import write_ind_val_dsets, write_main_dataset, write_region_references, \
24
    create_indexed_group, write_simple_attrs, write_book_keeping_attrs, copy_attributes,\
25
    write_reduced_anc_dsets, get_unit_values
26
from pyUSID.io.usi_data import USIDataset
27
from pyUSID.processing.comp_utils import get_available_memory
28

29
30
31
if sys.version_info.major == 3:
    unicode = str

32

Somnath, Suhas's avatar
Somnath, Suhas committed
33
34
35
36
37
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Unknown's avatar
Unknown committed
38

Chris Smith's avatar
Chris Smith committed
39
40
41
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)
        self.h5_raw = None
42
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
43
        self._cores = kwargs.pop('cores', None)
Unknown's avatar
Unknown committed
44
45
46
        self.FFT_BE_wave = None
        self.signal_type = None
        self.expt_type = None
Chris Smith's avatar
Chris Smith committed
47

48
    @staticmethod
49
    def is_valid_file(data_path):
50
51
52
53
54
        """
        Checks whether the provided file can be read by this translator

        Parameters
        ----------
55
        data_path : str
56
57
58
59
            Path to raw data file

        Returns
        -------
60
61
62
63
        obj : str
            Path to file that will be accepted by the translate() function if
            this translator is indeed capable of translating the provided file.
            Otherwise, None will be returned
64
        """
65
66
67
68
69
70
71
72
        if not isinstance(data_path, (str, unicode)):
            raise TypeError('data_path must be a string')

        ndf = 'newdataformat'

        data_path = path.abspath(data_path)

        if path.isfile(data_path):
73
74
75
76
            ext = data_path.split('.')[-1]
            if ext.lower() not in ['jpg', 'png', 'jpeg', 'tiff', 'mat', 'txt',
                                   'dat', 'xls', 'xlsx']:
                return None
77
78
            # we only care about the folder names at this point...
            data_path, _ = path.split(data_path)
79
80

        # Check if the data is in the new or old format:
81
82
83
84
85
86
87
        # Check one level up:
        _, dir_name = path.split(data_path)
        if dir_name == ndf:
            # Though this translator could also read the files but the NDF Translator is more robust...
            return None
        # Check one level down:
        if ndf in listdir(data_path):
88
            # Though this translator could also read the files but the NDF Translator is more robust...
89
90
91
            return None

        file_path = path.join(data_path, listdir(path=data_path)[0])
92
93

        _, path_dict = BEodfTranslator._parse_file_path(file_path)
94

95
96
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in path_dict.values()]):
            # This is a G-mode Line experiment:
97
            return None
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        if any([x.find('bigtime_0') > 0 and x.endswith('.dat') for x in
                path_dict.values()]):
            # This is a G-mode Line experiment:
            return None

        parm_found = any([piece in path_dict.keys() for piece in
                          ['parm_txt', 'old_mat_parms']])
        real_found = any([piece in path_dict.keys() for piece in
                          ['read_real', 'write_real']])
        imag_found = any([piece in path_dict.keys() for piece in
                          ['read_imag', 'write_imag']])

        if parm_found and real_found and imag_found:
            if 'parm_txt' in path_dict.keys():
                return path_dict['parm_txt']
            else:
                return path_dict['old_mat_parms']
115
        else:
116
            return None
117

118
119
    def translate(self, file_path, show_plots=True, save_plots=True,
                  do_histogram=False, verbose=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
134
135
        verbose : (optional) Boolean
            Whether or not to print statements
Somnath, Suhas's avatar
Somnath, Suhas committed
136
137
138
139
140
141
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
ssomnath's avatar
ssomnath committed
142
143
        self._verbose = verbose

144
        file_path = path.abspath(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
145
        (folder_path, basename) = path.split(file_path)
146
        (basename, path_dict) = self._parse_file_path(file_path)
Unknown's avatar
Unknown committed
147

Somnath, Suhas's avatar
Somnath, Suhas committed
148
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
149
150
        tot_bins_multiplier = 1
        udvs_denom = 2
Unknown's avatar
Unknown committed
151

Somnath, Suhas's avatar
Somnath, Suhas committed
152
        if 'parm_txt' in path_dict.keys():
ssomnath's avatar
ssomnath committed
153
            if self._verbose:
154
                print('\treading parameters from text file')
Unknown's avatar
Unknown committed
155
            (isBEPS, parm_dict) = parmsToDict(path_dict['parm_txt'])
156
157
158
            if parm_dict['VS_mode'] == 'AC modulation mode':
                # Initial text files named this differently
                parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
159
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
160
            if self._verbose:
161
                print('\treading parameters from old mat file')
ssomnath's avatar
ssomnath committed
162
            parm_dict = self._get_parms_from_old_mat(path_dict['old_mat_parms'], verbose=self._verbose)
163
164
165
166
            if parm_dict['VS_steps_per_full_cycle'] == 0:
                isBEPS=False
            else:
                isBEPS=True
Somnath, Suhas's avatar
Somnath, Suhas committed
167
        else:
168
            raise FileNotFoundError('No parameters file found! Cannot translate this dataset!')
169

ssomnath's avatar
ssomnath committed
170
        if self._verbose:
171
172
            keys = list(parm_dict.keys())
            keys.sort()
173
            print('\tExperiment parameters:')
174
175
176
177
            for key in keys:
                print('\t\t{} : {}'.format(key, parm_dict[key]))

            print('\n\tisBEPS = {}'.format(isBEPS))
Unknown's avatar
Unknown committed
178

Somnath, Suhas's avatar
Somnath, Suhas committed
179
180
181
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
Unknown's avatar
Unknown committed
182

Somnath, Suhas's avatar
Somnath, Suhas committed
183
184
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
Unknown's avatar
Unknown committed
185

Somnath, Suhas's avatar
Somnath, Suhas committed
186
            if not std_expt:
187
                raise ValueError('This translator does not handle user defined voltage spectroscopy')
Unknown's avatar
Unknown committed
188
189
190

            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode'])

Somnath, Suhas's avatar
Somnath, Suhas committed
191
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
192
193
194
195
196
197
198
199
200
201
202
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
Unknown's avatar
Unknown committed
203

Somnath, Suhas's avatar
Somnath, Suhas committed
204
205
206
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
Unknown's avatar
Unknown committed
207

Somnath, Suhas's avatar
Somnath, Suhas committed
208
        # Check file sizes:
ssomnath's avatar
ssomnath committed
209
        if self._verbose:
210
211
            print('\tChecking sizes of real and imaginary data files')

Somnath, Suhas's avatar
Somnath, Suhas committed
212
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
213
214
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
215
216
217
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
Unknown's avatar
Unknown committed
218

Somnath, Suhas's avatar
Somnath, Suhas committed
219
220
221
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

222
        # Check here if a second channel for current is present
223
224
        # Look for the file containing the current data

ssomnath's avatar
ssomnath committed
225
        if self._verbose:
226
            print('\tLooking for secondary channels')
227
228
        file_names = listdir(folder_path)
        aux_files = []
Unknown's avatar
Unknown committed
229
        current_data_exists = False
230
231
232
233
234
235
236
        for fname in file_names:
            if 'AI2' in fname:
                if 'write' in fname:
                    current_file = path.join(folder_path, fname)
                    current_data_exists=True
                aux_files.append(path.join(folder_path, fname))

Unknown's avatar
Unknown committed
237
        add_pix = False
Somnath, Suhas's avatar
Somnath, Suhas committed
238
239
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
ssomnath's avatar
ssomnath committed
240
        if self._verbose:
241
            print('\tRows: {}, Cols: {}'.format(num_rows, num_cols))
Unknown's avatar
Unknown committed
242
243
        num_pix = num_rows * num_cols
        tot_bins = real_size / (num_pix * 4)
Chris Smith's avatar
Chris Smith committed
244
        # Check for case where only a single pixel is missing.
245
246
247
248
        if num_pix == 1:
            check_bins = real_size / (num_pix * 4)
        else:
            check_bins = real_size / ((num_pix - 1) * 4)
Unknown's avatar
Unknown committed
249

ssomnath's avatar
ssomnath committed
250
        if self._verbose:
251
252
253
            print('\tChecking bins: Total: {}, actual: {}'.format(tot_bins,
                                                                  check_bins))

Unknown's avatar
Unknown committed
254
        if tot_bins % 1 and check_bins % 1:
255
256
            raise ValueError('Aborting! Some parameter appears to have '
                             'changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
257
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
258
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
259
260
261
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
262
263
            warn('Warning:  A pixel seems to be missing from the data. '
                 'File will be padded with zeros.')
Unknown's avatar
Unknown committed
264
265
266
267
            add_pix = True

        tot_bins = int(tot_bins) * tot_bins_multiplier

Somnath, Suhas's avatar
Somnath, Suhas committed
268
        if 'parm_mat' in path_dict.keys():
ssomnath's avatar
ssomnath committed
269
            if self._verbose:
270
                print('\treading BE arrays from parameters text file')
271
            bin_inds, bin_freqs, bin_FFT, ex_wfm = self._read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
272
        elif 'old_mat_parms' in path_dict.keys():
ssomnath's avatar
ssomnath committed
273
            if self._verbose:
274
                print('\treading BE arrays from old mat text file')
275
            bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec = self._read_old_mat_be_vecs(path_dict['old_mat_parms'], verbose=verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
276
        else:
ssomnath's avatar
ssomnath committed
277
            if self._verbose:
278
                print('\tGenerating dummy BE arrays')
Unknown's avatar
Unknown committed
279
            band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim'])
Somnath, Suhas's avatar
Somnath, Suhas committed
280
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
Unknown's avatar
Unknown committed
281
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width
Somnath, Suhas's avatar
Somnath, Suhas committed
282
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
Unknown's avatar
Unknown committed
283

284
            warn('No parms .mat file found.... Filling dummy values into ancillary datasets.')
Somnath, Suhas's avatar
Somnath, Suhas committed
285
286
287
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
Unknown's avatar
Unknown committed
288

Somnath, Suhas's avatar
Somnath, Suhas committed
289
290
291
292
293
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
294

Somnath, Suhas's avatar
Somnath, Suhas committed
295
        self.FFT_BE_wave = bin_FFT
296

Somnath, Suhas's avatar
Somnath, Suhas committed
297
        if isBEPS:
ssomnath's avatar
ssomnath committed
298
            if self._verbose:
299
                print('\tBuilding UDVS table for BEPS')
ssomnath's avatar
ssomnath committed
300
            UDVS_labs, UDVS_units, UDVS_mat = self._build_udvs_table(parm_dict)
Unknown's avatar
Unknown committed
301

ssomnath's avatar
ssomnath committed
302
            if self._verbose:
303
                print('\tTrimming UDVS table to remove unused plot group columns')
304

305
            UDVS_mat, UDVS_labs, UDVS_units = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
Unknown's avatar
Unknown committed
306

307
            old_spec_inds = np.zeros(shape=(2, tot_bins), dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
308

309
            # Will assume that all excitation waveforms have same num of bins
Unknown's avatar
Unknown committed
310
311
            num_actual_udvs_steps = UDVS_mat.shape[0] / udvs_denom
            bins_per_step = tot_bins / num_actual_udvs_steps
ssomnath's avatar
ssomnath committed
312
            if self._verbose:
313
314
                print('\t# UDVS steps: {}, # bins/step: {}'
                      ''.format(num_actual_udvs_steps, bins_per_step))
Unknown's avatar
Unknown committed
315

Somnath, Suhas's avatar
Somnath, Suhas committed
316
            if bins_per_step % 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
317
318
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
319
                raise ValueError('Non integer number of bins per step!')
Unknown's avatar
Unknown committed
320

Somnath, Suhas's avatar
Somnath, Suhas committed
321
322
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
Unknown's avatar
Unknown committed
323
324
325

            stind = 0
            for step_index in range(UDVS_mat.shape[0]):
Unknown's avatar
Unknown committed
326
327
328
                if UDVS_mat[step_index, 2] < 1E-3:  # invalid AC amplitude
                    continue
                # Bin step
329
                old_spec_inds[0, stind:stind + bins_per_step] = np.arange(bins_per_step, dtype=INDICES_DTYPE)
Unknown's avatar
Unknown committed
330
                # UDVS step
331
                old_spec_inds[1, stind:stind + bins_per_step] = step_index * np.ones(bins_per_step, dtype=INDICES_DTYPE)
Somnath, Suhas's avatar
Somnath, Suhas committed
332
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
333
            del stind, step_index
Unknown's avatar
Unknown committed
334

Somnath, Suhas's avatar
Somnath, Suhas committed
335
        else:  # BE Line
ssomnath's avatar
ssomnath committed
336
            if self._verbose:
337
                print('\tPreparing supporting variables since BE-Line')
Somnath, Suhas's avatar
Somnath, Suhas committed
338
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
339
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
340
341
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
342
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
343
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
344
345
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
346

Chris Smith's avatar
Chris Smith committed
347
348
            old_spec_inds = np.vstack((np.arange(tot_bins, dtype=INDICES_DTYPE),
                                       np.zeros(tot_bins, dtype=INDICES_DTYPE)))
Unknown's avatar
Unknown committed
349

Somnath, Suhas's avatar
Somnath, Suhas committed
350
351
352
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
353
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Rama Vasudevan's avatar
Rama Vasudevan committed
354
        parm_dict['num_steps'] = num_actual_udvs_steps
Unknown's avatar
Unknown committed
355

ssomnath's avatar
ssomnath committed
356
        if self._verbose:
357
            print('\tPreparing UDVS slices for region references')
Somnath, Suhas's avatar
Somnath, Suhas committed
358
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
359
        for col_ind, col_name in enumerate(UDVS_labs):
Unknown's avatar
Unknown committed
360
361
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind + 1))

Somnath, Suhas's avatar
Somnath, Suhas committed
362
        # Need to add the Bin Waveform type - infer from UDVS        
Unknown's avatar
Unknown committed
363
        exec_bin_vec = self.signal_type * np.ones(len(bin_inds), dtype=np.int32)
Somnath, Suhas's avatar
Somnath, Suhas committed
364
365

        if self.expt_type == 2:
ssomnath's avatar
ssomnath committed
366
            if self._verbose:
367
                print('\tExperiment type = 2. Doubling BE vectors')
Unknown's avatar
Unknown committed
368
            exec_bin_vec = np.hstack((exec_bin_vec, -1 * exec_bin_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
369
370
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
371
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
372
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Unknown's avatar
Unknown committed
373

Somnath, Suhas's avatar
Somnath, Suhas committed
374
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
375
        # This is an old and legacy way of doing things. Ideally, all we would need ot do is just get the unit values
ssomnath's avatar
ssomnath committed
376
        if self._verbose:
377
            print('\tCalculating spectroscopic values')
ssomnath's avatar
ssomnath committed
378
379
380
381
        ret_vals = createSpecVals(UDVS_mat, old_spec_inds, bin_freqs,
                                  exec_bin_vec, parm_dict, UDVS_labs,
                                  UDVS_units, verbose=verbose)
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = ret_vals
382

ssomnath's avatar
ssomnath committed
383
        if self._verbose:
384
            print('\t\tspec_vals_labs: {}'.format(spec_vals_labs))
385
386
387
            unit_vals = get_unit_values(spec_inds, spec_vals,
                                        all_dim_names=spec_vals_labs,
                                        is_spec=True, verbose=False)
388
389
390
391
            print('\tUnit spectroscopic values')
            for key, val in unit_vals.items():
                print('\t\t{} : length: {}, values:\n\t\t\t{}'.format(key, len(val), val))

392
393
394
395
        if spec_inds.shape[1] != tot_bins:
            raise ValueError('Second axis of spectroscopic indices: {} not '
                             'matching with second axis of the expected main '
                             'dataset: {}'.format(spec_inds.shape, tot_bins))
396

397
398
399
400
        # Not sure what is happening here but this should work.
        spec_dim_dict = dict()
        for entry in spec_vals_labs_names:
            spec_dim_dict[entry[0] + '_parameters'] = entry[1]
Chris Smith's avatar
Chris Smith committed
401

Somnath, Suhas's avatar
Somnath, Suhas committed
402
403
404
        spec_vals_slices = dict()

        for row_ind, row_name in enumerate(spec_vals_labs):
Unknown's avatar
Unknown committed
405
            spec_vals_slices[row_name] = (slice(row_ind, row_ind + 1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
406

407
        if path.exists(h5_path):
ssomnath's avatar
ssomnath committed
408
            if self._verbose:
409
                print('\tRemoving existing / old translated file: ' + h5_path)
410
            remove(h5_path)
Chris Smith's avatar
Chris Smith committed
411

412
        # First create the file
ssomnath's avatar
ssomnath committed
413
        h5_f = h5py.File(h5_path, mode='w')
Somnath, Suhas's avatar
Somnath, Suhas committed
414

415
        # Then write root level attributes
416
        global_parms = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
417
418
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
419
420
421
422
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
423

Somnath, Suhas's avatar
Somnath, Suhas committed
424
        # assuming that the experiment was completed:
Unknown's avatar
Unknown committed
425
426
        global_parms['current_position_x'] = parm_dict['grid_num_cols'] - 1
        global_parms['current_position_y'] = parm_dict['grid_num_rows'] - 1
Somnath, Suhas's avatar
Somnath, Suhas committed
427
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
428
        global_parms['translator'] = 'ODF'
ssomnath's avatar
ssomnath committed
429
        if self._verbose:
430
            print('\tWriting attributes to HDF5 file root')
431
        write_simple_attrs(h5_f, global_parms)
432
        write_book_keeping_attrs(h5_f)
Unknown's avatar
Unknown committed
433

434
435
        # Then create the measurement group
        h5_meas_group = create_indexed_group(h5_f, 'Measurement')
Unknown's avatar
Unknown committed
436

437
        # Write attributes at the measurement group level
ssomnath's avatar
ssomnath committed
438
        if self._verbose:
439
            print('\twriting attributes to Measurement group')
440
        write_simple_attrs(h5_meas_group, parm_dict)
Unknown's avatar
Unknown committed
441

442
443
        # Create the Channel group
        h5_chan_grp = create_indexed_group(h5_meas_group, 'Channel')
Unknown's avatar
Unknown committed
444

445
        # Write channel group attributes
Rama Vasudevan's avatar
Rama Vasudevan committed
446
447
        write_simple_attrs(h5_chan_grp, {'Channel_Input': 'IO_Analog_Input_1',
                                         'channel_type': 'BE'})
Unknown's avatar
Unknown committed
448

449
        # Now the datasets!
ssomnath's avatar
ssomnath committed
450
        if self._verbose:
451
            print('\tCreating ancillary datasets')
Chris Smith's avatar
Chris Smith committed
452
        h5_chan_grp.create_dataset('Excitation_Waveform', data=ex_wfm)
Unknown's avatar
Unknown committed
453

454
        h5_udvs = h5_chan_grp.create_dataset('UDVS', data=UDVS_mat)
ssomnath's avatar
ssomnath committed
455
456
457
        # TODO: Avoid using region references in USID
        write_region_references(h5_udvs, udvs_slices, add_labels_attr=True, verbose=self._verbose)
        write_simple_attrs(h5_udvs, {'units': UDVS_units}, verbose=False)
458

Chris Smith's avatar
Chris Smith committed
459
        h5_chan_grp.create_dataset('UDVS_Indices', data=old_spec_inds[1])
460

Chris Smith's avatar
Chris Smith committed
461
462
        h5_chan_grp.create_dataset('Bin_Step', data=np.arange(bins_per_step, dtype=INDICES_DTYPE),
                                   dtype=INDICES_DTYPE)
463

Chris Smith's avatar
Chris Smith committed
464
465
466
467
        h5_chan_grp.create_dataset('Bin_Indices', data=bin_inds, dtype=INDICES_DTYPE)
        h5_chan_grp.create_dataset('Bin_Frequencies', data=bin_freqs)
        h5_chan_grp.create_dataset('Bin_FFT', data=bin_FFT)
        h5_chan_grp.create_dataset('Bin_Wfm_Type', data=exec_bin_vec)
468

ssomnath's avatar
ssomnath committed
469
        if self._verbose:
470
471
472
473
            print('\tWriting Position datasets')

        pos_dims = [Dimension('X', 'm', np.arange(num_cols)),
                    Dimension('Y', 'm', np.arange(num_rows))]
ssomnath's avatar
ssomnath committed
474
475
        h5_pos_ind, h5_pos_val = write_ind_val_dsets(h5_chan_grp, pos_dims, is_spectral=False, verbose=self._verbose)
        if self._verbose:
476
            print('\tPosition datasets of shape: {}'.format(h5_pos_ind.shape))
477

ssomnath's avatar
ssomnath committed
478
        if self._verbose:
479
            print('\tWriting Spectroscopic datasets of shape: {}'.format(spec_inds.shape))
480
481
482
        h5_spec_inds = h5_chan_grp.create_dataset('Spectroscopic_Indices', data=spec_inds, dtype=INDICES_DTYPE)        
        h5_spec_vals = h5_chan_grp.create_dataset('Spectroscopic_Values', data=np.array(spec_vals), dtype=VALUES_DTYPE)
        for dset in [h5_spec_inds, h5_spec_vals]:
ssomnath's avatar
ssomnath committed
483
484
            write_region_references(dset, spec_vals_slices, add_labels_attr=True, verbose=self._verbose)
            write_simple_attrs(dset, {'units': spec_vals_units}, verbose=False)
485
            write_simple_attrs(dset, spec_dim_dict)
486
487

        # Noise floor should be of shape: (udvs_steps x 3 x positions)
ssomnath's avatar
ssomnath committed
488
        if self._verbose:
489
            print('\tWriting noise floor dataset')
Chris Smith's avatar
Chris Smith committed
490
491
        h5_chan_grp.create_dataset('Noise_Floor', (num_pix, num_actual_udvs_steps), dtype=nf32,
                                   chunks=(1, num_actual_udvs_steps))
492
493
494
495
496
497
498
499
500
501
502

        """
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.

        Chris Smith -- csmith55@utk.edu
        """
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
ssomnath's avatar
ssomnath committed
503
        if self._verbose:
504
            print('\tHDF5 dataset will have chunks of size: {}'.format(BEPS_chunks))
505
            print('\tCreating empty main dataset of shape: ({}, {})'.format(num_pix, tot_bins))
506
507
508
        self.h5_raw = write_main_dataset(h5_chan_grp, (num_pix, tot_bins), 'Raw_Data', 'Piezoresponse', 'V', None, None,
                                         dtype=np.complex64, chunks=BEPS_chunks, compression='gzip',
                                         h5_pos_inds=h5_pos_ind, h5_pos_vals=h5_pos_val, h5_spec_inds=h5_spec_inds,
ssomnath's avatar
ssomnath committed
509
                                         h5_spec_vals=h5_spec_vals, verbose=self._verbose)
Somnath, Suhas's avatar
Somnath, Suhas committed
510

ssomnath's avatar
ssomnath committed
511
        if self._verbose:
512
513
            print('\tReading data from binary data files into raw HDF5')
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
514
                        add_pix)
Unknown's avatar
Unknown committed
515

ssomnath's avatar
ssomnath committed
516
        if self._verbose:
517
            print('\tGenerating plot groups')
518
        generatePlotGroups(self.h5_raw, self.mean_resp, folder_path, basename,
Somnath, Suhas's avatar
Somnath, Suhas committed
519
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
520
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
ssomnath's avatar
ssomnath committed
521
522
                           do_histogram=do_histogram, debug=self._verbose)
        if self._verbose:
523
            print('\tUpgrading to USIDataset')
524
        self.h5_raw = USIDataset(self.h5_raw)
Unknown's avatar
Unknown committed
525
526
527

        # Go ahead and read the current data in the second (current) channel
        if current_data_exists:                     #If a .dat file matches
ssomnath's avatar
ssomnath committed
528
            if self._verbose:
529
                print('\tReading data in secondary channels (current)')
530
            self._read_secondary_channel(h5_meas_group, aux_files)
531

ssomnath's avatar
ssomnath committed
532
        if self._verbose:
533
            print('\tClosing HDF5 file')
534
        h5_f.close()
Unknown's avatar
Unknown committed
535

Somnath, Suhas's avatar
Somnath, Suhas committed
536
        return h5_path
Chris Smith's avatar
Chris Smith committed
537

538
    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS,
ssomnath's avatar
ssomnath committed
539
                   add_pix):
Chris Smith's avatar
Chris Smith committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
ssomnath's avatar
ssomnath committed
566
            if self._verbose:
567
                print('\t\tReading all raw data for BE-Line in one shot')
568
569
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
570
                                  parm_dict['num_udvs_steps'])
571
572
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
Chris Smith's avatar
Chris Smith committed
573
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
ssomnath's avatar
ssomnath committed
574
            if self._verbose:
575
576
577
                print('\t\tReading all raw BEPS (out-of-field) data at once')
            self._quick_read_data(path_dict['read_real'],
                                  path_dict['read_imag'],
ssomnath's avatar
ssomnath committed
578
                                  parm_dict['num_udvs_steps'])
579
580
        elif real_size < self.max_ram and \
                parm_dict['VS_measure_in_field_loops'] == 'in-field':
Chris Smith's avatar
Chris Smith committed
581
            # Do this for in-field only
ssomnath's avatar
ssomnath committed
582
            if self._verbose:
583
584
585
                print('\t\tReading all raw BEPS (in-field only) data at once')
            self._quick_read_data(path_dict['write_real'],
                                  path_dict['write_imag'],
ssomnath's avatar
ssomnath committed
586
                                  parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
587
588
        else:
            # Large BEPS datasets OR those with in-and-out of field
ssomnath's avatar
ssomnath committed
589
            if self._verbose:
590
591
592
593
594
                print('\t\tReading all raw data for in-and-out-of-field OR '
                      'very large file one pixel at a time')
            self._read_beps_data(path_dict, UDVS_mat.shape[0],
                                 parm_dict['VS_measure_in_field_loops'],
                                 add_pix)
595
        self.h5_raw.file.flush()
Chris Smith's avatar
Chris Smith committed
596

597
    def _read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
Unknown's avatar
Unknown committed
616

Somnath, Suhas's avatar
Somnath, Suhas committed
617
        print('---- reading pixel-by-pixel ----------')
Unknown's avatar
Unknown committed
618
619
620
621

        bytes_per_pix = self.h5_raw.shape[1] * 4
        step_size = self.h5_raw.shape[1] / udvs_steps

Somnath, Suhas's avatar
Somnath, Suhas committed
622
        if mode == 'out-of-field':
Unknown's avatar
Unknown committed
623
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
624
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
625
        elif mode == 'in-field':
Unknown's avatar
Unknown committed
626
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
627
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
628
629
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
Unknown's avatar
Unknown committed
630
            if 0.5 * udvs_steps % 1:
631
632
                raise ValueError('Odd number of UDVS')

Unknown's avatar
Unknown committed
633
            udvs_steps = int(0.5 * udvs_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
634
            # be careful - each pair contains only half the necessary bins - so read half
Unknown's avatar
Unknown committed
635
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'],
Somnath, Suhas's avatar
Somnath, Suhas committed
636
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
Unknown's avatar
Unknown committed
637
638
639
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'],
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2))]

Somnath, Suhas's avatar
Somnath, Suhas committed
640
            if step_size % 1:
641
642
                raise ValueError('strange number of bins per UDVS step. Exiting')

Somnath, Suhas's avatar
Somnath, Suhas committed
643
            step_size = int(step_size)
644

645
646
        rand_spectra = self._get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra)
647
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
648

Somnath, Suhas's avatar
Somnath, Suhas committed
649
650
651
652
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

Unknown's avatar
Unknown committed
653
        numpix = self.h5_raw.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
654
655
656
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
Unknown's avatar
Unknown committed
657
658
659
660
        """
        if add_pixel:
            numpix -= 1

Somnath, Suhas's avatar
Somnath, Suhas committed
661
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
662
            if self.h5_raw.shape[0] > 5:
Unknown's avatar
Unknown committed
663
664
665
                if pix_indx % int(round(self.h5_raw.shape[0] / 10)) == 0:
                    print('Reading... {} complete'.format(round(100 * pix_indx / self.h5_raw.shape[0])))

Somnath, Suhas's avatar
Somnath, Suhas committed
666
667
668
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
669
                pxl_data.append(prsr.read_pixel())
Unknown's avatar
Unknown committed
670

Somnath, Suhas's avatar
Somnath, Suhas committed
671
672
673
674
675
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
Unknown's avatar
Unknown committed
676

Somnath, Suhas's avatar
Somnath, Suhas committed
677
678
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
Unknown's avatar
Unknown committed
679
                raw_mat = np.empty((udvs_steps * 2, step_size), dtype=out_fld.dtype)
Somnath, Suhas's avatar
Somnath, Suhas committed
680
681
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
682
683
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
684
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
685
686
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Unknown's avatar
Unknown committed
687
            self.mean_resp = (1 / (pix_indx + 1)) * (raw_vec + pix_indx * self.mean_resp)
688
689
690

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
691
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
692
            self.h5_raw.file.flush()
Unknown's avatar
Unknown committed
693

Somnath, Suhas's avatar
Somnath, Suhas committed
694
        # Add zeros to main_data for the missing pixel. 
Unknown's avatar
Unknown committed
695
696
697
        if add_pixel:
            self.h5_raw[-1, :] = 0 + 0j

Somnath, Suhas's avatar
Somnath, Suhas committed
698
        print('---- Finished reading files -----')
699

ssomnath's avatar
ssomnath committed
700
    def _quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
701
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
702
703
704
705
706
707
708
709
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
710
711
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
712
        """
713
714
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0],
                             self.h5_raw.shape[1] * 4)
715
716

        step_size = self.h5_raw.shape[1] / udvs_steps
717
718
719
720
        rand_spectra = self._get_random_spectra([parser],
                                                self.h5_raw.shape[0],
                                                udvs_steps, step_size,
                                                num_spectra=self.num_rand_spectra,
ssomnath's avatar
ssomnath committed
721
722
                                                verbose=self._verbose)
        if self._verbose:
723
            print('\t\t\tChecking if conjugate is required')
724
        take_conjugate = requires_conjugate(rand_spectra, cores=self._cores)
Somnath, Suhas's avatar
Somnath, Suhas committed
725
        raw_vec = parser.read_all_data()
726
        if take_conjugate:
ssomnath's avatar
ssomnath committed
727
            if self._verbose:
728
                print('\t'*4 + 'Taking conjugate for positive quality factors')
729
            raw_vec = np.conjugate(raw_vec)
Unknown's avatar
Unknown committed
730

Rama Vasudevan's avatar
Rama Vasudevan committed
731
732
        if raw_vec.shape != np.prod(self.h5_raw.shape):
            percentage_padded = 100 * (np.prod(self.h5_raw.shape) - raw_vec.shape) / np.prod(self.h5_raw.shape)
733
            warn('Warning! Raw data length {} is not matching placeholder length {}. '
Rama Vasudevan's avatar
Rama Vasudevan committed
734
735
736
737
738
739
740
741
742
                  'Padding zeros for {}% of the data!'.format(raw_vec.shape, np.prod(self.h5_raw.shape), percentage_padded))

            padded_raw_vec = np.zeros(np.prod(self.h5_raw.shape), dtype = np.complex64)

            padded_raw_vec[:raw_vec.shape[0]] = raw_vec
            raw_mat = padded_raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
        else:
            raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])

Somnath, Suhas's avatar
Somnath, Suhas committed
743
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
744
745
746
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
747
        self.h5_raw[:, :] = np.complex64(raw_mat)
748
        self.h5_raw.file.flush()
Somnath, Suhas's avatar
Somnath, Suhas committed
749

Unknown's avatar
Unknown committed
750
751
        print('---- Finished reading files -----')

752
753
    @staticmethod
    def _parse_file_path(data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
754
755
756
757
758
759
760
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
761
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
762
763
764
765
766
767
768
769
770
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
Unknown's avatar
Unknown committed
771
        (super_folder, basename) = path.split(folder_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
772

773
774
        if basename.endswith('_d') or basename.endswith('_c'):
            # Old old data format where the folder ended with a _d or _c to denote a completed spectroscopic run
Somnath, Suhas's avatar
Somnath, Suhas committed
775
776
777
778
779
780
781
782
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
Unknown's avatar
Unknown committed
783

Somnath, Suhas's avatar
Somnath, Suhas committed
784
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
785
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
786
787
788
789
790
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
Unknown's avatar
Unknown committed
791
                elif file_name == (basename + '.mat'):
Somnath, Suhas's avatar
Somnath, Suhas committed
792
793
794
795
796
797
798
799
800
801
802
803
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
804
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
805

ssomnath's avatar
ssomnath committed
806
    def _read_secondary_channel(self, h5_meas_group, aux_file_path):
807
808
809
810
811
812
813
814
815
816
817
818
        """
        Reads secondary channel stored in AI .mat file
        Currently works for in-field measurements only, but should be updated to
        include both in and out of field measurements

        Parameters
        -----------
        h5_meas_group : h5 group
            Reference to the Measurement group
        aux_file_path : String / Unicode
            Absolute file path of the secondary channel file.
        """
ssomnath's avatar
ssomnath committed
819
        if self._verbose:
820
            print('\t---------- Reading Secondary Channel  ----------')
821
        if isinstance(aux_file_path, (list, tuple)):
822
823
824
825
            aux_file_paths = aux_file_path
        else:
            aux_file_paths = list(aux_file_path)

826
        is_in_out_field = 'Field' in self.h5_raw.spec_dim_labels
827

828
829
830
831
832
833
834
835
836
        if not is_in_out_field and len(aux_file_paths) > 1:
            # TODO: Find a better way to handle this
            warn('\t\tField was not varied but found more than one file for '
                 'secondary channel: {}.\n\t\tResults will be overwritten'
                 ''.format([path.split(item)[-1] for item in aux_file_paths]))
        elif is_in_out_field and len(aux_file_paths) == 1:
            warn('\t\tField was varied but only one data file for secondary'
                 'channel was found. Half the data will be zeros')

837
        spectral_len = 1
838
839
840
        for dim_name, dim_size in zip(self.h5_raw.spec_dim_labels,
                                      self.h5_raw.spec_dim_sizes):
            if dim_name == 'Frequency':
841
                continue
842
            spectral_len = spectral_len * dim_size
843

844
        num_pix = self.h5_raw.shape[0]
ssomnath's avatar
ssomnath committed
845
        if self._verbose:
846
847
848
            print('\t\tExpecting this channel to be of shape: ({}, {})'
                  ''.format(num_pix, spectral_len))
            print('\t\tis_in_out_field: {}'.format(is_in_out_field))
849
850

        # create a new channel
851
852
        h5_current_channel_group = create_indexed_group(h5_meas_group,
                                                        'Channel')